作者:
Rong Zhang;Lili Yang;Sihong Long;Shengyu Zhang;Jia Wei;...
期刊:
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES,2025年88(8):329-338 ISSN:1528-7394
通讯作者:
Jia Wei<&wdkj&>Fei Yang
作者机构:
[Rong Zhang; Lili Yang; Sihong Long; Shengyu Zhang] Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China;Xiangya School of Public Health, Central South University, Changsha, China;The Department of Public Health, The Central Hospital of Shaoyang, Shaoyang, China;Nuclear Medicine Department, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China;[Jia Wei] Xiangya School of Public Health, Central South University, Changsha, China<&wdkj&>The Department of Public Health, The Central Hospital of Shaoyang, Shaoyang, China
通讯机构:
[Jia Wei] X;[Fei Yang] H;Xiangya School of Public Health, Central South University, Changsha, China<&wdkj&>The Department of Public Health, The Central Hospital of Shaoyang, Shaoyang, China<&wdkj&>Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China<&wdkj&>Nuclear Medicine Department, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
摘要:
Microcystins (MCs) are one of the most widespread cyanotoxins produced by harmful cyanobacterial blooms (Ren et al. 2024). To date, more than 300 isomers of MCs have been identified (Baliu-Rodrigue...
期刊:
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES,2025年88(10):385-394 ISSN:1528-7394
通讯作者:
Yang, Yue;Yang, F;Yang, Y
作者机构:
[Zhang, Yin; Yang, F; Dai, Manni; Yang, Yue; Yang, Fei; Guan, Ying] Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.;[Yang, Yue] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Hengyang, Hunan, Peoples R China.;[Yang, Yue] Cent Hosp Shaoyang, Dept Publ Hlth, Shaoyang, Peoples R China.;[Yang, F; Yang, Fei] Hunan Prov Maternal & Child Hlth Care Hosp, Changsha, Hunan, Peoples R China.
通讯机构:
[Yang, F ; Yang, Y] U;[Yang, Y ] C;Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.;Cent Hosp Shaoyang, Dept Publ Hlth, Shaoyang, Peoples R China.;Hunan Prov Maternal & Child Hlth Care Hosp, Changsha, Hunan, Peoples R China.
摘要:
Microcystin-LR (MC-LR) a cyclic toxin produced by cyanobacterial species is known to exert detrimental effects on various organs, including lung. Several investigators demonstrated that MC-LR exerts pulmonary toxicity, but the underlying mechanisms remain unclear. This study aimed to investigate whether exposure to MC-LR-induced lung inflammation and examine the underlying mechanisms. Thirty specific pathogen-free (SPF) male mice were allocated into control and MC-LR treatment groups. Mice were intraperitoneally injected with physiological saline or MC-LR (20 mu g/kg) daily for a total of 21 days. Our findings indicated that exposure to MC-LR-produced histopathological changes in lung tissue, including thickening of alveolar walls and inflammatory infiltration. MC-LR was found to upregulate mRNA expression levels of pro-inflammatory cytokines TNF alpha, IL-6, IL-1 beta, and IL-18. Further, MC-LR significantly elevated the expression levels of proteins associated with the NF-kappa B/NLRP3 pathway p-NF-kappa B, NLRP3, Caspase-1, ASC. The activation of NF-kappa B/NLRP3 pathway further promoted the release of inflammatory cytokine IL-1 beta and cleavage of pyroptosis-associated GSDMD protein. These findings indicate that MC-LR may induce lung inflammation by promoting cell pyroptosis via the activation of the NF-kappa B/NLRP3 pathway.
摘要:
OBJECTIVE: To analyze the expression of the SOX gene family in lung adenocarcinoma and its impact on the prognosis of lung adenocarcinoma patients using tumor databases. METHODS: The cBioPortal database was used to retrieve and analyze the mutation frequencies and variants of 10 genes in the SOX gene family in lung adenocarcinoma tissues. Using clinical information from the Kaplan-Meier plotter database, the potential prognostic values of 10 genes in the SOX gene family in lung adenocarcinoma patients were further explored. The UALCAN database and TCGA database were used to obtain the expression of methylation of SOX gene family members and compare the mRNA expression of 10 genes in lung adenocarcinoma tissues and paracancerous tissues, respectively. The miRCancer database was intersected with miRTarBase, ENCORI, and miRWalk databases to find the lung adenocarcinoma-related miRNAs that regulate the SOX gene family. RESULTS: Most members in the SOX gene family had expansion mutation, but SOX15 had a deletion mutation. Upregulation of SOX8 and SOX17 is associated with improved outcomes in LUAD patients (HR < 1, log-rank P < 0.05), whereas high expression of SOX3, SOX5, SOX6, SOX12, SOX14, SOX15, SOX18, and SRY correlates with poor prognosis in LUAD patients (HR > 1, log-rank P < 0.05). The mRNA expression of SOX3 and SOX15 was significantly higher in LUAD tissues compared to adjacent normal tissues, while SOX5, SOX6, SOX12, SOX17, SOX18, and SRY were lower in LUAD tissues than in adjacent normal tissues (P < 0.05). Moreover, SOX3, SOX5, SOX8, SOX14, SOX17 and SOX18 showed hypermethylation, while SOX15 showed hypomethylation in LUAD tissues (P < 0.05). Furthermore, hsa-miR-1-3p and miR-499a-5p were positively correlated with SOX5 (r = 0.272, P = 3.87 × 10(-10)) and SOX6 (r = 0.109, P = 1.34 × 10(-2)), respectively. CONCLUSION: The SOX gene family is closely implicated in the onset and progression of lung adenocarcinoma, of which most members may be used as prognostic marker genes for patients.
期刊:
Science of The Total Environment,2025年958:178088 ISSN:0048-9697
通讯作者:
Fei Yang<&wdkj&>Hongli Tan
作者机构:
[Li, Jing] School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China;[Li, Jing] Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China;[Yang, Liu] School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK;[Ding, Yuying] Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China;[Ding, Yuying] School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
通讯机构:
[Fei Yang] H;[Hongli Tan] G;Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China<&wdkj&>Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
关键词:
Health risk;Indoor dust;Organophosphate esters;Spatial variations;Temporal trends
摘要:
This study investigated the presence of 20 organophosphate esters (OPEs) in indoor dust samples collected from the Chinese cities of Lanzhou, Xining, and Lhasa. The results demonstrate the ubiquitous presence of most OPEs in these three cities, with the highest concentrations of ΣOPEs found in Xining. We also summarized the occurrence of OPEs in indoor environments from 38 studies with 1875 samples collected across various regions of mainland China from 2012 to 2023. The weighted-median concentration of ΣOPEs in indoor dust exhibited region-specific variations, range from 381.9 to 6622.5 ng/g. Chloroalkyl-OPEs (Cl-OPEs) (e.g., tris(2-chloroethyl) phosphate (TCEP), tri(1-chloro-2-propyl) phosphate (TCIPP), and tri (1,3-dichloro-2-propyl) phosphate (TDCIPP)) predominated in all seven regions (range: 38.9 %–71.4 %). TCIPP was predominant in the Central China, North China, Northeast China, Northwest China, Southwest China, and Southwest China regions, while TCEP dominated in the Eastern China region. A significant downward trend in OPE concentrations in indoor environments was observed during the investigated period. Dust ingestion was identified as the predominant pathway of human exposure to OPEs indoors. The hazard quotients for Cl-OPEs were below the non-carcinogenic threshold, suggesting significant health risks are unlikely. This study underscores the widespread occurrence of OPEs in indoor dust across mainland China, emphasizing the necessity for ongoing monitoring and regulation of these chemicals.
This study investigated the presence of 20 organophosphate esters (OPEs) in indoor dust samples collected from the Chinese cities of Lanzhou, Xining, and Lhasa. The results demonstrate the ubiquitous presence of most OPEs in these three cities, with the highest concentrations of ΣOPEs found in Xining. We also summarized the occurrence of OPEs in indoor environments from 38 studies with 1875 samples collected across various regions of mainland China from 2012 to 2023. The weighted-median concentration of ΣOPEs in indoor dust exhibited region-specific variations, range from 381.9 to 6622.5 ng/g. Chloroalkyl-OPEs (Cl-OPEs) (e.g., tris(2-chloroethyl) phosphate (TCEP), tri(1-chloro-2-propyl) phosphate (TCIPP), and tri (1,3-dichloro-2-propyl) phosphate (TDCIPP)) predominated in all seven regions (range: 38.9 %–71.4 %). TCIPP was predominant in the Central China, North China, Northeast China, Northwest China, Southwest China, and Southwest China regions, while TCEP dominated in the Eastern China region. A significant downward trend in OPE concentrations in indoor environments was observed during the investigated period. Dust ingestion was identified as the predominant pathway of human exposure to OPEs indoors. The hazard quotients for Cl-OPEs were below the non-carcinogenic threshold, suggesting significant health risks are unlikely. This study underscores the widespread occurrence of OPEs in indoor dust across mainland China, emphasizing the necessity for ongoing monitoring and regulation of these chemicals.
摘要:
Microcystin-LR (MC-LR) is a toxin that causes hepatic steatosis. Our previous study found that exposure to 60 μg/L MC-LR for 9 months resulted in liver lipid accumulation, but the underlying mechanisms remain elusive. Herein, for the first time, fatty acid-targeted metabolome and RNA-seq were combined to probe the effect and mechanism of chronic (12-month) MC-LR treatment on mice lipid metabolism at environmental-related levels (1, 60, and 120 μg/L). It was found that MC-LR dose-dependently raised serum and liver lipid levels. The total cholesterol (TC) levels in the liver were significantly increased following treatment with 1 μg/L MC-LR (equivalent to 0.004 μ/L in human). Treatment with 60 and 120 μg/L MC-LR significantly elevated TC and triglyceride (TG) levels in both serum and liver. Serum fatty acid-targeted metabolome analysis demonstrated that exposure to 1, 60, and 120 μg/L MC-LR caused significant alterations in the fatty acid profile. Chronic 1, 60, and 120 μg/L MC-LR treatment significantly increased serum polyunsaturated fatty acids (PUFAs), including conjugated linoleic acid and eicosapentaenoic acid, which positively correlated with serum or liver TG levels. Chronic exposure to 120 μg/L MC-LR led to a significant decrease in the accumulation of saturated fatty acids, including citramalic acid, pentadecanoic acid, and docosanoic acid, which were negatively correlated with serum or liver lipid levels. These findings suggested that 1 μg/L MC-LR exposure caused mild lipid metabolism disruption, while 60 and 120 μg/L MC-LR treatment resulted in pronounced hepatic steatosis in mice. Transcriptome analysis revealed that chronic environmental MC-LR treatment regulated the expression of genes involved in the phosphatidylinositol 3-kinase (PI3K) complex and fatty acid metabolism. Western blotting and RT-qPCR confirmed that chronic environmental MC-LR exposure activated the PI3K/AKT/mTOR signaling pathway, the downstream of fads3 gene that participates in fatty acid desaturation was upregulated, fatty acid degradation-related genes, including acsl1, acsl4, and ehhadh were inhibited, and lipid transport-related genes, including slc27a4 and apol7a, were promoted. Thus, chronic environmental MC-LR exposure boosts hepatic steatosis. Our work indicated that the limit concentration of 1 μg/L MC-LR in human drinking water for safety needs to be discussed. The study provides the first evidence of the fatty acid profile and gene changes and gains new insights into the mechanisms of chronic environmental MC-LR treatment-induced hepatic steatosis.
作者:
Luo, Sihuan;Zhao, Xiaomei;Wang, Yijin;Jiang, Miao;Cao, Yi
期刊:
Food and Chemical Toxicology,2025年197:115304 ISSN:0278-6915
通讯作者:
Cao, Y
作者机构:
[Zhao, Xiaomei; Cao, Yi; Wang, Yijin; Luo, Sihuan] Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.;[Jiang, Miao] Univ South China, Inst Cardiovasc Dis, Hengyang Med Coll, Key Lab Arteriosclerol Hunan Prov,Hunan Int Sci &, Hengyang 421001, Peoples R China.
通讯机构:
[Cao, Y ] U;Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.
关键词:
Autophagy;In vivo toxicity;Lipid profiles;Nanoplastics;Oral exposure
摘要:
The wide uses of plastics lead to nanoplastic exposure in reality. Previous studies reported that micro- and nano-plastics (MNPs) disrupted metabolism, but few studies investigated lipid profile changes. Hereby, we exposed mice to vehicles (control), 0.05 or 0.5 mg/kg 20 or 100 nm nanoplastics via gavage, once a day, for 14 days. Albeit no obvious tissue damage, lipidomics data revealed 76 up-regulated and 29 down-regulated lipid molecules in mouse intestines. Further analysis revealed that a number of up-regulated lipid molecules belong to glycerophospholipid (GP). Among GP, we noticed an up-regulation of 9 phosphatidylserine (PS) molecules, and we further verified the presence of autophagosomes and co-localization of typical autophagic lipolysis proteins in intestinal sections, as well as decreased lysosomal associated protein 2 (LAMP2) and increased adipose triglyceride lipase (ATGL) in intestinal homogenates, indicating perturbed autophagic pathway. The exposure also up-regulated 9 phosphatidylinositol (PI) molecules, and we verified a significant decrease of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), indicating altered PI3K-signaling pathway. Besides GP, nanoplastics also significantly up-regulated some sphingolipids (SP), such as ceramide (Cer), and some sterol lipids, such as cholesterol derivatives. Combined, these results suggested that oral exposure to nanoplastics altered lipid profiles and related signaling pathway in mouse intestines.
The wide uses of plastics lead to nanoplastic exposure in reality. Previous studies reported that micro- and nano-plastics (MNPs) disrupted metabolism, but few studies investigated lipid profile changes. Hereby, we exposed mice to vehicles (control), 0.05 or 0.5 mg/kg 20 or 100 nm nanoplastics via gavage, once a day, for 14 days. Albeit no obvious tissue damage, lipidomics data revealed 76 up-regulated and 29 down-regulated lipid molecules in mouse intestines. Further analysis revealed that a number of up-regulated lipid molecules belong to glycerophospholipid (GP). Among GP, we noticed an up-regulation of 9 phosphatidylserine (PS) molecules, and we further verified the presence of autophagosomes and co-localization of typical autophagic lipolysis proteins in intestinal sections, as well as decreased lysosomal associated protein 2 (LAMP2) and increased adipose triglyceride lipase (ATGL) in intestinal homogenates, indicating perturbed autophagic pathway. The exposure also up-regulated 9 phosphatidylinositol (PI) molecules, and we verified a significant decrease of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), indicating altered PI3K-signaling pathway. Besides GP, nanoplastics also significantly up-regulated some sphingolipids (SP), such as ceramide (Cer), and some sterol lipids, such as cholesterol derivatives. Combined, these results suggested that oral exposure to nanoplastics altered lipid profiles and related signaling pathway in mouse intestines.
摘要:
This work delves into the mechanism enabling pH interference resistance in iron-based bimetallic oxides within the peroxymonosulfate (PMS) system. We employed MnFe₂O₄ spinel oxides as a catalyst for an in-depth comparison with monometallic analogs. We discovered that Fe(III) sites within the bimetallic oxide serve as sacrificial sites for hydroxyl ions as pH rises, stabilizing the cycling of active Mn sites. Elevated pH promotes the formation of surface hydroxyl groups, which enhance PMS and phenol adsorption via hydrogen bonding, thereby facilitating PMS activation by adjacent Mn sites and accelerating phenol degradation on the catalyst's surface. The cooperative effects of Fe(III) sacrifice and enhanced hydrogen bonding contribute significantly to the expanded pH tolerance of the iron-based bimetallic system, achieving nearly a 4.9-fold increase in kinetic efficiency at pH 6.2 relative to pH 3.2. This study deepens our understanding of sustainable Fenton-like systems and highlights their promising role in the degradation of pollutants.
This work delves into the mechanism enabling pH interference resistance in iron-based bimetallic oxides within the peroxymonosulfate (PMS) system. We employed MnFe₂O₄ spinel oxides as a catalyst for an in-depth comparison with monometallic analogs. We discovered that Fe(III) sites within the bimetallic oxide serve as sacrificial sites for hydroxyl ions as pH rises, stabilizing the cycling of active Mn sites. Elevated pH promotes the formation of surface hydroxyl groups, which enhance PMS and phenol adsorption via hydrogen bonding, thereby facilitating PMS activation by adjacent Mn sites and accelerating phenol degradation on the catalyst's surface. The cooperative effects of Fe(III) sacrifice and enhanced hydrogen bonding contribute significantly to the expanded pH tolerance of the iron-based bimetallic system, achieving nearly a 4.9-fold increase in kinetic efficiency at pH 6.2 relative to pH 3.2. This study deepens our understanding of sustainable Fenton-like systems and highlights their promising role in the degradation of pollutants.
期刊:
JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH,2025年51(1):e16120- ISSN:1341-8076
通讯作者:
Wu, CQ
作者机构:
[Wu, CQ; Xie, Yinghao; Wu, Chengqiu; Zhu, Qiong] Univ South China, Sch Publ Hlth, Hengyang, Peoples R China.;[Liu, Jun] Hengyang Cent Dis Control & Prevent, Hengyang, Peoples R China.
通讯机构:
[Wu, CQ ] U;Univ South China, Sch Publ Hlth, Hengyang, Peoples R China.
关键词:
CD1a;ovarian cancer;prognosis;recurrence;recurrent ovarian cancer
摘要:
OBJECTIVE: Explored the correlation between CD1a expression in recurrence and prognosis of ovarian cancer (OV). METHODS: The CD1a expression profile in OV, recurrent OV, and normal tissues, as well as corresponding clinical data, were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Gene Expression Omnibus (GEO), and Genotype Tissue Expression (GTEx) databases. Meanwhile, immunohistochemical detection of CD1a expression in normal and OV tissues. Kaplan-Meier curves were plotted to estimate the hazard ratio (HR) of survival in OV. In addition, the correlation between CD1a and immune cells in OV, as well as the CD1a expression profile and corresponding survival time in pan-cancer were obtained from TCGA database. RESULTS: CD1a was overexpressed in OV and was significantly under-expressed in recurrent OV (TCGA-OV, p < 0.0001 and ICGC-OV, p < 0.0001). CD1a immunohistochemistry is significantly overexpressed in OV compared to normal tissue (p < 0.05). Recurrent OV (ICGC, p < 0.001; GSE17260, p < 0.001; GSE32062, p < 0.05). The prognosis in OV was significantly better when CD1a is overexpressed compared to under-expressed (HR [low], 1.426: 95% confidence interval [CI], 0.912-2.128; p = 0.050). Meanwhile, the overexpression of CD1a has a better prognosis than low expression in OV and recurrent OV (p = 0.004, HR [low] = 2.462, 95%CI [1.346-4.504] and p = 0.011, HR [low] = 2.199, 95%CI [1.202-4.024]). In addition, CD1a expression was closely correlated with immune cells, the CD8+ T cells, macrophages, and NK cells, while uncharacterized cells were significantly different (p = 2.65e-6, p = 7.52e-13, p = 8.28e-12, and p = 5.89e-8, respectively). Moreover, CD1a expression affected the prognosis in various other cancers. CONCLUSIONS: CD1a expression affected the recurrence and prognosis of OV and is closely related to various immune cell levels.
期刊:
Food Safety and Health,2025年3(1):89-99 ISSN:2835-1096
通讯作者:
Xiangheng Niu
作者机构:
[Ziyu Zhang; Lina Tang; Wenjie Sheng; Youyi Yang; Guolin Lai; Jinjin Liu] School of Public Health, Hengyang Medical School, University of South China, Hengyang, China;Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, China;[Xiangheng Niu] School of Public Health, Hengyang Medical School, University of South China, Hengyang, China<&wdkj&>Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, China
通讯机构:
[Xiangheng Niu] S;School of Public Health, Hengyang Medical School, University of South China, Hengyang, China<&wdkj&>Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, China
摘要:
As a common food additive, excessive nitrite poses a great threat to human health, and monitoring its content in food products is of importance for healthy diet. Currently, the detection of nitrite content in food is primarily focused on fresh dishes, and there is a lack of research on monitoring the variations of nitrite in different foods under various storage conditions. In this study, we cascaded nanozyme catalysis with diazotization reaction and developed a ratiometric colorimetric assay to dynamically analyze nitrite in leftovers. First, nanoscale MnFe 2 O 4 was synthesized as an oxidase mimic to catalyze colorless 3,3 ′ ,5,5 ′ -tetramethylbenzidine (TMB) oxidation to blue TMBox. Then, a diazotization process of the produced TMBox took place under the stimulation of nitrite, lowering the ultraviolet-visible absorption signal (652 nm) assigned to TMBox and simultaneously generating a new signal at 445 nm ascribed to diazotized TMBox. Thus, a ratiometric colorimetric method could be constructed based on the above reversed variations of the two signals for high-selectivity nitrite determination, providing a linear range of 1.76–180 μM and a detection limit of 0.12 μM. By employing the established assay to dynamically monitor nitrite in food products, it was found that the nitrite content in overnight leftovers was higher than that in fresh dishes, presenting an increasing trend with storage time. In addition, potential impacts of storage factors on the dynamics of nitrite content were investigated, providing some implications for food preservation and daily consumption.
摘要:
Occupational exposure to N-hexane/2,5-hexanedione (2,5-HD) was found to adversely affect reproductive functions in females. However, there are few studies regarding the mechanisms underlying reproductive system damage initiated by 2,5-HD. Several studies demonstrated that 2,5-HD exerts hormonal dysfunctions in females by promoting apoptosis using rat ovarian granulosa cells (GCs) as a model. The endoplasmic reticulum (ER) plays a key role in cellular processes such as protein folding and modification, Ca(2+) storage, and lipid synthesis, which are known to involve the activation of stress (ERS)-dependent m-TOR signaling pathway. Thus, the aim of this study was to examine the effects of 2,5-HD on ER and the associated activation of stress (ERS)-dependent m-TOR signaling pathway resulting in consequent apoptosis of ovarian GCs. Data demonstrated that after intraperitoneal treatment with 100, 200, or 400 mg/kg 2,5-HD for 6 consecutive weeks, 5 times per week, a decrease in body weight, ovarian weight, and relative ovary weight was found. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that 2,5-HD promoted apoptosis of ovarian GCs, which involved enhanced relative protein expression levels of m-TOR/p-mTOR. Our findings demonstrated that 2,5-HD (1) elevated expression levels of pro-apoptosis-related genes Bax and Caspase 3, (2) decreased expression levels of the anti-apoptosis gene Bcl-2, and (3) activated the protein expression of glucose-regulatory protein 78 (GRP78), inositol-requiring enzyme-1 (IRE1), and c-Jun terminal kinase (JNK) associated with increased apoptosis. Evidence indicates that chronic exposure to 2,5-HD induced apoptosis of ovarian GCs, and the possible mechanism underlying this effect involves the ERS-dependent m-TOR signaling pathway.
摘要:
BACKGROUND: Antibiotics, as the most commonly prescribed class of drugs in neonatal intensive care units, have an important impact on the developing neonatal gut microbiota. Therefore, comprehending the effects of commonly used antibiotic therapy on the gut microbiota and butyrate-producers in early infants could provide information for therapeutic decision-making in the NICU. OBJECTIVES: To explore the effects of antibiotic therapy on the early development of gut microbiota and butyrate-producers in early infants. METHODS: A total of 72 infants were included in the study. We performed 16S rRNA sequencing on stool swab samples collected from neonatal intensive care unit patients who received amoxicillin-clavulanic acid (AC, n = 10), moxalactam (ML, n = 28) and non-antibiotics (NA, n = 34). We then compared the taxonomic composition between treatment regimens, focusing on differences in butyrate-producers. RESULTS: Our study showed that there were significant differences in Shannon index (p = 0.033) and Beta diversity (p = 0.014) among the three groups. At the family level, compared with the other two groups, the relative abundance of Clostridiaceae (p < 0.001) and Veillonellaceae (p = 0.004) were significantly higher, while the relative abundance of Enterococcidae (p < 0.001) was significantly lower in the NA group. The relative abundance of Enterobacteriaceae (p = 0.022) in the AC group was greater than that in the other two groups. Additionally, butyrate-producers (p < 0.001), especially Clostridiaceae (p < 0.001), were noticeably more abundant in the NA group. The relative abundance of Clostridiaceae and butyrate-producers were the lowest in the ML group (p < 0.001). CONCLUSION: We found that antibiotic therapy had an adverse impact on the initial development of gut microbiota and leaded to a reduction in the abundance of butyrate-producers, particularly Clostridiaceae. Furthermore, moxalactam had a more pronounced effect on the gut microbiota compared to amoxicillin-clavulanic acid.
通讯机构:
[Yang, F ] U;[Chen, JH ] G;Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.;Guangdong Acad Sci, Inst Ecoenvironm & Soil Sci, Guangzhou 510650, Peoples R China.
摘要:
A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ. The MC-LR and H1 binding will activate the H2 and H3 self-assemblies through toehold-mediated strand displacement. In the formed products (MC-LR/H1/nH2/nH3), FAM and BHQ will be separated and a high FAM fluorescence signal can be observed for the MC-LR assay. The biosensor is sensitive with a detection limit of 53 fM. We further constructed several logic circuits (AND-AND cascaded circuit, feedforward circuit, and resource allocation circuit) using MC-LR, MC-LA, and MC-YR as the three inputs. The numbers 0 and 1 are used to code the input and output signals. The AND-AND cascade circuit can produce a high output signal only in the (111) input combination. In the feedforward circuit, MC-LR and MC-LA can activate the logic circuit to produce high signals, and MC-YR will inhibit the self-assembly and execute the negative feedforward operation. Through the rational design of the DNA probe hybridizations on four different magnetic beads (MBs), the resource allocation circuit can achieve an intelligent allocation of input information. Our proposed fluorescence biosensor can not only provide a sensitive platform for microcystin detection but also serve as a smart and intelligent logic system for microcystin sensing.
摘要:
Water purification technology that can simultaneously remove uranium, degrade organic pollutants, and inactivate pathogenic bacteria is crucial for protecting human health and the environment. In this study, we developed a self-driven photoelectrocatalytic (PEC) system using a sulfamic acid-modified carbon felt (CF/SA) cathode and a TiO 2 nanorod photoanode, both of which were obtained by hydrothermal methods. The system demonstrated excellent water purification performance in complex aqueous environments under sunlight illumination. The CF/SA cathode enabled improved interfacial charge transfer and more surface binding sites for uranium (UO 2 2+ ) adsorption and reduction. In the presence of both UO 2 2+ and sulfamethoxazole, almost 100 % UO 2 2+ was removed within 30 min, and 98.98 % sulfamethoxazole was degraded within 1.5 h. The self-driven PEC system also demonstrated effective antibacterial properties by completely inactivating E. coli within 25 min. Variations in wastewater characteristics, such as ions, pH, and organic concentrations had minimal impacts on the stability of the system. It also functioned well under real sunlight and exhibited excellent stability in long-term operation. This work demonstrated an effective cathode material to enhance the uranium reduction and antibiotics decomposition in a self-driven PEC system and provided a new solution for inactivating aqueous pathogens using sunlight only.
Water purification technology that can simultaneously remove uranium, degrade organic pollutants, and inactivate pathogenic bacteria is crucial for protecting human health and the environment. In this study, we developed a self-driven photoelectrocatalytic (PEC) system using a sulfamic acid-modified carbon felt (CF/SA) cathode and a TiO 2 nanorod photoanode, both of which were obtained by hydrothermal methods. The system demonstrated excellent water purification performance in complex aqueous environments under sunlight illumination. The CF/SA cathode enabled improved interfacial charge transfer and more surface binding sites for uranium (UO 2 2+ ) adsorption and reduction. In the presence of both UO 2 2+ and sulfamethoxazole, almost 100 % UO 2 2+ was removed within 30 min, and 98.98 % sulfamethoxazole was degraded within 1.5 h. The self-driven PEC system also demonstrated effective antibacterial properties by completely inactivating E. coli within 25 min. Variations in wastewater characteristics, such as ions, pH, and organic concentrations had minimal impacts on the stability of the system. It also functioned well under real sunlight and exhibited excellent stability in long-term operation. This work demonstrated an effective cathode material to enhance the uranium reduction and antibiotics decomposition in a self-driven PEC system and provided a new solution for inactivating aqueous pathogens using sunlight only.
期刊:
WATER AIR AND SOIL POLLUTION,2025年236(1):1-12 ISSN:0049-6979
通讯作者:
Xue, JH
作者机构:
[Wang, Xinqing; Huang, Boshi; Xue, Jinhua; Xiao, Xilin] Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hengyang, Hunan, Peoples R China.;[Lin, Dongying] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.;[Liu, Jingjing; Ren, Lanxing] Univ South China, Sch Chem & Chem Engn, Hengyang 421001, Peoples R China.;[Xiao, Xilin] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha, Hunan, Peoples R China.
通讯机构:
[Xue, JH ] U;Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hengyang, Hunan, Peoples R China.
关键词:
Cadmium (II);FR;PAN;Fluorescence quenching
摘要:
The objective of this study was to establish a novel method of fluorescence for the determination of cadmium using fluorescein (FR) and 1-(2-Pyridinylazo)-2-Naohthalenol (PAN). In the pH 9.75 buffer solution of the ammonia-ammonium chloride, the energy transfer between FR and the PAN can occur, which can result in the quenching of the fluorescence. The addition of Cd (II) to this system enhances the degree of quenching. This phenomenon has led to the establishment of a novel method for the determination of cadmium, which has been optimized in terms of the required experimental conditions. In the optimal experimental conditions, the fluorescence intensity of the system decreased linearly in the range of 7.81 x 10-7 to 2.14 x 10-5 mol L-1. The linear regression equation used in this study was F = 123.63 + 170.65c (x 10-6 mol L-1) under the correlation coefficient of 0.9951, the detection limit of 2.34 x 10-7 mol L-1, and the relative standard deviation of 0.18%. The proposed method was simple, sensitive, fast, and economical. The method can be employed for the determination of cadmium in real samples (tap-water, pond water and Xiangjiang River) with the results demonstrating consistency with the graphite furnace atomic absorption method (t-test). This approach offers an innovative method for the quantification of Cd (II).
作者机构:
[Zhao, Kunyan; Song, Fengmei; Yang, Fei; Tang, Yan] Univ South China, Sch Publ Hlth, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.;[Wu, Mingyang] Cent South Univ, Xiangya Sch Publ Hlth, Dept Maternal & Child Hlth, Changsha 410007, Peoples R China.;[Qiu, Jun; Qiu, J; Pan, Xiongfeng; Liu, Caixia; Xiang, Shiting] Cent South Univ, Affiliated Childrens Hosp, Hunan Childrens Hosp, Pediat Res Inst Hunan Prov,Xiangya Sch Med, Changsha 410007, Peoples R China.;[Peng, Yunlong] Soochow Univ, Dept Epidemiol & Hlth Stat, Med Coll, Suzhou 215123, Peoples R China.;[Cao, Yunhui; Wu, Sha] Univ South China, Hengyang Med Sch, Dept Pediat, Hengyang 421001, Peoples R China.
通讯机构:
[Qiu, J ] C;Cent South Univ, Affiliated Childrens Hosp, Hunan Childrens Hosp, Pediat Res Inst Hunan Prov,Xiangya Sch Med, Changsha 410007, Peoples R China.
关键词:
Early life;Gut microbiota;Neonate;Thallium
摘要:
Previous research has found a correlation between heavy metals and gut microbiota in humans. However, there are few population-based studies examining the impact of early life thallium (Tl) exposure on neonatal microbiome. 342 newborns were recruited from Hunan Children's Hospital and subsequently divided into three groups (low, medium, and high) based on the 25th and 75th percentiles of serum Tl concentration. Additionally, the relationship between Tl and gut microbiota was analyzed in subgroups (preterm or full-term neonates). The association between Tl and gut microbiota in neonates was analyzed by Redundancy analysis, Spearman correlation analysis and MaAsLin2. The detection rate of Tl in neonates was 100%, with the median concentration of 0.021 μg/L. In all neonates, we found significant differences in the Chao1 and ACE indices of α-diversity in gut microbiota, and the relative abundances of Bacteroidota and Bacteroidetes were significantly different among groups ( p < 0.05). Following the covariate adjustment, Tl was negatively correlated with Gemmatimonadota (Coef = 0.265, p < 0.05) in preterm neonates. In full-term neonates, Tl exhibited a positive correlation with the relative abundance of Robinsoniella (Coef = 0.563, p = 0.009) and a negative correlation with that of Pseudomonas (Coef = - 0.592, p = 0.012). Tryptophan and renin-angiotensin system pathways might exert important roles in Tl exposure. This study indicated that Tl exposure was associated with changes in α-diversity and the composition of gut microbiota in neonates, with Gemmatimonadota being predominantly affected in preterm neonates and Robinsoniella and Pseudomonas in full-term neonates.
Previous research has found a correlation between heavy metals and gut microbiota in humans. However, there are few population-based studies examining the impact of early life thallium (Tl) exposure on neonatal microbiome. 342 newborns were recruited from Hunan Children's Hospital and subsequently divided into three groups (low, medium, and high) based on the 25th and 75th percentiles of serum Tl concentration. Additionally, the relationship between Tl and gut microbiota was analyzed in subgroups (preterm or full-term neonates). The association between Tl and gut microbiota in neonates was analyzed by Redundancy analysis, Spearman correlation analysis and MaAsLin2. The detection rate of Tl in neonates was 100%, with the median concentration of 0.021 μg/L. In all neonates, we found significant differences in the Chao1 and ACE indices of α-diversity in gut microbiota, and the relative abundances of Bacteroidota and Bacteroidetes were significantly different among groups ( p < 0.05). Following the covariate adjustment, Tl was negatively correlated with Gemmatimonadota (Coef = 0.265, p < 0.05) in preterm neonates. In full-term neonates, Tl exhibited a positive correlation with the relative abundance of Robinsoniella (Coef = 0.563, p = 0.009) and a negative correlation with that of Pseudomonas (Coef = - 0.592, p = 0.012). Tryptophan and renin-angiotensin system pathways might exert important roles in Tl exposure. This study indicated that Tl exposure was associated with changes in α-diversity and the composition of gut microbiota in neonates, with Gemmatimonadota being predominantly affected in preterm neonates and Robinsoniella and Pseudomonas in full-term neonates.
期刊:
Chemical Communications,2025年61(18):3756-3759 ISSN:1359-7345
通讯作者:
Pan, Jiafeng;Yang, F
作者机构:
[Wang, Yuyan; Yang, F; Pan, Jiafeng; Zeng, Ying; Ren, Xiaoya; Yang, Fei] Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.;[Qiu, Jun] Hunan Childrens Hosp, Changsha 410000, Hunan, Peoples R China.
通讯机构:
[Yang, F ; Pan, JF] U;Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Peoples R China.
摘要:
Based on a Y-shaped wheel-mediated triple walker, an enzyme-free biosensor was reported for UO22+ detection. Due to the DNAzyme-driven mechanism, our walker was activated and produced a fluorescence signal for UO22+ assay. The sensor demonstrated ultra-sensitivity, good specificity and excellent accuracy, holding great promise for UO22+ sensing in complex water samples.
摘要:
Lactic acid has aroused increasing attention due to its close association with serious diseases. A real-time, dynamic, and intelligent detection method is vital for sensitive detection of lactic acid. Here, a machine learning (ML)-assisted perspiration-driven self-powered sensor (PDS sensor) is fabricated using Ni-ZIF-8@lactate oxidase and pyruvate oxidase (Ni-ZIF-8@LOx&POx)/laser-induced graphene (LIG), bilirubin oxidase (BOD)/LIG, and a microchannel for highly sensitive and real-time monitoring of lactic acid in sweat. Driven by the oxidation reaction of lactic acid, PDS sensors exhibit excellent sensitivity, a wide detection range, good reproducibility, and excellent selectivity for lactic acid detection in sweat. When subjects with different body mass index (BMI) undergo aerobic or anaerobic exercise or maintain a sedentary state, PDS sensors can monitor lactic acid in sweat wirelessly and in real-time. Moreover, a ML algorithm was employed to assist PDS sensors to detect lactic acid in the subjects' sweat with a high prediction accuracy of 96.0%.
作者机构:
[Tian, Qingzhen; Liu, Jinjin; Tang, Zheng; Niu, Xiangheng; Li, Shu; Chen, Xinyu] Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hengyang 421001, Peoples R China.
通讯机构:
[Niu, XH ] U;Univ South China, Sch Publ Hlth, Hengyang Med Sch, Hengyang 421001, Peoples R China.
摘要:
Organophosphorus pesticides (OPs) are widely used in agricultural production, posing a great threat to human health and the environment. Given that different OPs present different toxicology and toxicities, identifying individual pesticide residues becomes important for assessing food safety and environmental implications. In this work, a kinetics difference-driven analyte hydrolysis strategy is proposed for the first time and validated to identify p-nitrophenyl pesticides by developing an organophosphorus hydrolase-like nanozyme-coded sensor array. Ultrasmall bare CeO(2) nanoparticles were synthesized and employed as the only sensing unit to catalyze the hydrolysis of multiple analytes. With catalytic preferences and kinetics differences under identical reaction conditions, five common OPs analogues (methyl-paraoxon, paraoxon, methyl-parathion, parathion, and fenitrothion) offered discriminable colors. By coupling the color fingerprints with pattern recognition, the accurate identification of individual p-nitrophenyl pesticides and their mixtures at a variety of concentrations and ratios was verified in laboratory and practical scenarios. Attractively, apart from excellent performance and convenient operation, the proposed hydrolytic nanozyme-coded pattern presents strong resistance against redox substances that often cause interference in previous oxidoreductase-based sensor arrays. Our study provides a new paradigm of discriminating specific OPs precisely, showing promising applications in multitarget analysis in complex matrices.
期刊:
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES,2025年88(8):339-348 ISSN:1528-7394
通讯作者:
Liu, Jun;Zhan, CH
作者机构:
[Liu, Jun; Zhan, Chunhua; Yang, Yue; Yang, Fei; Wang, Yaqi] Univ South China, Sch Basic Med Sci, Sch Publ Hlth, Hunan Key Lab Typ Environm Pollut & Hlth Hazards,H, Hengyang 421001, Hunan, Peoples R China.;[Zeng, Wen; Zhan, Chunhua] Cent Hosp Shaoyang, Dept Publ Hlth, Shaoyang, Peoples R China.;[Yuan, Mei] Univ South China, Affiliated Hosp 2, Hengyang Med Sch, Dept Neurol, Hengyang, Hunan, Peoples R China.;[Zhan, Chunhua] Univ South China, Key Lab Rare Pediat Dis, Minist Educ, Hengyang 421001, Hunan, Peoples R China.
通讯机构:
[Liu, J; Zhan, CH ] U;Univ South China, Sch Basic Med Sci, Sch Publ Hlth, Hunan Key Lab Typ Environm Pollut & Hlth Hazards,H, Hengyang 421001, Hunan, Peoples R China.;Univ South China, Key Lab Rare Pediat Dis, Minist Educ, Hengyang 421001, Hunan, Peoples R China.
关键词:
MC-LR;Apoptosis;TNF-R1;RIPK1;HEK293
摘要:
In recent years, the outbreak of cyanobacterial blooms has become increasingly frequent. Microcystin-LR (MC-LR), a metabolite of cyanobacteria, poses a significant threat to the ecosystem and human health. Several studies have demonstrated that MC-LR might induce renal cell apoptosis, as a consequence of tissue damage. However, the molecular mechanisms underlying MC-LR-initiated renal injury remain to be determined. This investigation aimed to determine the role of apoptosis in MC-LR-induced kidney damage and its potential underlying mechanisms using the human embryonic kidney (HEK293) cell line. The results of TUNEL and immunofluorescence assays indicated that MC-LR induced increased apoptosis in HEK293 cells. Compared to control, the mRNA expression levels of RIPK1, caspase-8, and TNF-α were elevated following incubation with MC-LR, while the mRNA expression level of Bcl-2/Bax was decreased. The protein levels of RIPK1, TNF-R1, and caspase-8 were elevated in the MC-LR-treated HEK293 cells. Data demonstrated that MC-LR induced renal cell apoptosis through activation of the TNF-R1/RIPK1 pathway, providing new insights into understanding the toxic mechanisms attributed to MC-LR.