作者机构:
[Yu, B. X.; Yu, G.; Li, Xiaoyu; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Ma, M. M.; Zhao, Ling; Chen, T.; Hou, X. T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Rong, G.; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Wang, L. L.; Ouyang, Q.; Liao, Y. P.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Zhang, Jiawei; Fang, S. S.; Chang, J. F.; Liu, Z. A.; Yan, X. Q.; Wu, J. F.; Wang, Yaqian; Sun, S. S.; Ding, B.; Fu, C. D.; Lou, X. C.; Lin, T.; Zhang, B. X.; Xing, T. Y.; Cao, G. F.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Yang, Yifan; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, L. K.; Li, H. B.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Yin, J. H.; Batozskaya, V.; Liu, Huanhuan; Chen, X. T.; Zhang, J. Z.; He, K. L.; Chen, G.; Ablikim, M.; Liu, C. X.; Chang, W. L.; Zhu, K.; Zhao, J. Z.; Yang, Tao; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Zhang, Shuihan; Du, M. C.; Wang, Z.; Ablikim, M; Liu, Fang; Zhao, J. Y.; Dong, J.; Liu, K.; Shi, J. Y.; Wang, H. P.; Yuan, C. Z.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Li, Ke; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Sun, T.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Yuan, X. Q.; Zhang, Y. H.; Ma, R. Q.; Shi, R. S.; Zheng, W. J.; Zou, J. H.; Zhang, Yao; Liu, J. Y.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Gong, W. X.; Xu, W.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Wang, Meng; Yang, Y. X.; Miao, H.; Li, F.; Lu, Z. H.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Dai, H. L.; Li, W. D.; Fang, W. X.; Zeng, Y. J.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Li, Lei] Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China.;[Jaeger, S.; Fritsch, M.; Kuessner, M.; Pelizaeus, M.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Wiedner, U.; Heinsius, F. H. H.; Coen, S. C.; Wenzel, C. W.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Achasov, M. N.; Nikolaev, I. B.; Muchnoi, N. Yu] Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.
通讯机构:
[Ablikim, M ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.
摘要:
Based on data samples collected with the BESIII detector at the BEPCII collider, the process e+e- -> E+ E over bar - is studied at center -of -mass energies ffis ffi p = 2.3960, 2.6454, and 2.9000 GeV. Using a fully differential angular description of the final state particles, both the relative magnitude and phase information of the E+ electromagnetic form factors in the timelike region are extracted. The relative phase between the electric and magnetic form factors is determined to be sin AO = -0.67 +/- 0.29(stat) +/- 0.18(syst) at ffis ffi p = 2.3960 GeV, AO = 55 degrees +/- 19 degrees(stat) +/- 14 degrees(syst) at pffisffi = 2.6454 GeV, and 78 degrees +/- 22 degrees(stat) +/- 9 degrees(syst) at ffis ffi p = 2.9000 GeV. For the first time, the phase of the hyperon electromagnetic form factors is explored in a wide range of four -momentum transfer. The evolution of the phase along with fourmomentum transfer is an important input for understanding its asymptotic behavior and the dynamics of baryons.
作者机构:
[Wen, S P; Hou, G Y; Li, Xiaoyu; Liang, H; Dai, H L; Yuan, C Z; Zhao, G; Xu, W; Xiao, S Y; Zhao, Ling; Ma, Q M; Lou, X C; Hou, X T; Zhang, P; Liu, K; Tang, G Y; Batozskaya, V; Liu, P L; Wang, H P; Cao, G F; Sun, H K; Yan, X Q; Wang, Y F; Zhang, Jiawei; Kiuchi, R; Shi, R S; Wang, Y Q; Sun, Y Z; Zhang, J Z; Zhang, J W; Zhang, J Y; Zhang, Z H; Wang, Yaqian; Liu, C X; Mo, X H; Hu, Y; Hu, T; Song, W M; Zhu, Z A; Wu, Z; Zheng, W J; Chang, J F; Yuan, Y; Deng, Z Y; Yang, Yifan; Lu, J G; Yu, G; Hu, H M; Zheng, J P; Zeng, Y J; Ma, R Q; Ouyang, Q; Fang, W X; Liu, Huanhuan; Chen, T; Yuan, S C; Fu, Y W; Rong, G; Chen, G; Ding, B; Liu, B J; Zhu, K J; Hou, Z L; Ablikim, M; Xu, C F; Cai, X; Li, L K; Yang, Tao; Li, L J; Ma, H L; Qiu, J F; Zhang, Shuihan; Liu, Fang; Ma, X Y; Lu, Y P; Heng, Y K; Chang, W L; Qin, Z H; Fang, S S; Wang, B; Sun, S S; Wang, K; Ping, R G; Du, M C; Wang, Z; Liu, H M; Liao, Y P; Mao, Z P; Yin, J H; Yu, B X; Gong, W X; Kui, X; Lu, Z H; Chen, M L; Li, Ke; Zhu, K; Ji, X L; Zhang, B X; Ji, X B; Zhang, B L; Guan, C Y; Jing, M Q; Li, G; Shi, J Y; Li, F; Lin, T; Yuan, X Q; Zhang, A Q; Li, H B; Lu, X L; Xu, G F; Chen, X T; Yang, H X; Gu, M H; Zhang, Yao; Wang, Z Y; Zhang, Y H; Zou, J H; Wu, L H; Wu, L J; Zhang, H Q; Zhou, L P; Chen, H S; Shao, L G; Fu, C D; Zhang, H C; Zhao, J Y; Zhao, J Z; Xing, T Y; Li, W D; Li, W G; He, K L; Ma, M M; Qi, F Z; Qian, S; Yang, Y X; Zhang, X M; Zhang, H Y; Zhao, Y B; Chen, Y B; Sun, G X; Wang, L L; Ning, Z; Huang, Y P; Wang, Meng; Ma, J L; Dong, L Y; Luo, X L; Jiang, X S; Fang, Y; Fang, J; Ye, M; Shen, X Y; Dong, M Y; Cao, N; Miao, H; Shi, X; Ji, Q; Wu, J F; Liu, Z A; Shen, H F; Sun, T; Xie, Y G; Dong, J; Liu, J Y] Institute of High Energy Physics, Beijing 100049, People's Republic of China;[Achasov, M N; Muchnoi, N Yu; Nikolaev, I B] Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia;[Adlarson, P; Schoenning, K; Thoren, V; Kupsc, A; Wolke, M; Johansson, T] Uppsala University, Box 516, SE-75120 Uppsala, Sweden;[Li, D M; Liu, Y; Zhang, J; Du, S X; Yan, W C; Zhang, Q Y; Ai, X C; Zhao, S J; Ke, B C; Zhang, Y T] Zhengzhou University, Zhengzhou 450001, People's Republic of China;[Redmer, C F; Hüsken, N; Schelhaas, Y; Lenz, T; Lellmann, M; Stieler, F; Leithoff, H; Muskalla, J; Gradl, W; Aliberti, R; Heinz, C H; Plura, S; Berger, N; Denig, A] Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
摘要:
Using data samples collected with the BESIII detector at the BEPCII collider at center-of-mass energies ranging from 3.80 to 4.95GeV, corresponding to an integrated luminosity of 20 fb^{-1}, a measurement of Born cross sections for the e^{+}e^{-}→D^{0}D[over ¯]^{0} and D^{+}D^{-} processes is presented with unprecedented precision. Many clear peaks in the line shape of e^{+}e^{-}→D^{0}D[over ¯]^{0} and D^{+}D^{-} around the mass range of G(3900), ψ(4040), ψ(4160), Y(4260), and ψ(4415), etc., are foreseen. These results offer crucial experimental insights into the nature of hadron production in the open-charm region.
作者:
Ablikim, M.;Achasov, M. N.;Adlarson, P.;Ai, X. C.;Aliberti, R.;...
期刊:
PHYSICAL REVIEW D,2024年109(1) ISSN:2470-0010
通讯作者:
Ablikim, M
作者机构:
[Yu, B. X.; Yu, G.; Li, Xiaoyu; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Ma, M. M.; Zhao, Ling; Chen, T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Rong, G.; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Ouyang, Q.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Zhang, Jiawei; Fang, S. S.; Chang, J. F.; Liu, Z. A.; Yan, X. Q.; Wu, J. F.; Wang, Yaqian; Sun, S. S.; Ding, B.; Fu, C. D.; Lou, X. C.; Lin, T.; Zhang, B. X.; Xing, T. Y.; Cao, G. F.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Yang, Yifan; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, L. K.; Li, H. B.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Yin, J. H.; Batozskaya, V.; Liu, Huanhuan; Song, W. M.; Chen, X. T.; Zhang, J. Z.; He, K. L.; Chen, G.; Ablikim, M.; Liu, C. X.; Chang, W. L.; Zhu, K.; Zhao, J. Z.; Yang, Tao; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Zhang, Shuihan; Wang, Z.; Ablikim, M; Liu, Fang; K, X.; Zhao, J. Y.; Dong, J.; Liu, K.; Shi, J. Y.; Wang, H. P.; Yuan, C. Z.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Li, Ke; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Sun, T.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Yuan, X. Q.; Zhang, Y. H.; Ma, R. Q.; Shi, R. S.; Zheng, W. J.; Zou, J. H.; Zhang, Yao; Liu, J. Y.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Gong, W. X.; Xu, W.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Wang, Meng; Yang, Y. X.; Miao, H.; Li, F.; Lu, Z. H.; H, X. T.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Dai, H. L.; Li, W. D.; Fang, W. X.; Zeng, Y. J.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Li, Lei] Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China.;[Jaeger, S.; Fritsch, M.; Li, M. H.; Wiedner, U. W.; Pelizaeus, M.; Kuessner, M. K.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Heinsius, F. H. H.; Maldaner, S.; Coen, S. C.; Wenzel, C. W.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Briere, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
通讯机构:
[Ablikim, M ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.
摘要:
The Born cross sections and effective form factors of the process e(+) e(-) -> Lambda(Sigma) over bar (0) + c:c: are measured at 14 center-of -mass energy points from 2.3094 to 3.0800 GeV, based on data corresponding to an integrated luminosity of (478.5 +/- 4.8) pb(-1) collected with the BESIII detector. A nonzero Born cross section is observed at the center-of-mass energy of 2.3094 GeV with a statistical significance of more than five standard deviations, and the cross sections at other energies are obtained with improved precision compared to earlier measurements from the BABAR Collaboration. The Born cross-section line shape is described better by a shape considering the strong -interaction effects than by a pQCD motivated functional form.
作者机构:
[Yu, B. X.; Yu, G.; Li, Xiaoyu; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Ma, M. M.; Zhao, Ling; Chen, T.; Hou, X. T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Rong, G.; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Wang, L. L.; Ouyang, Q.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Zhang, Jiawei; Fang, S. S.; Chang, J. F.; Liu, Z. A.; Yan, X. Q.; Wu, J. F.; Wang, Yaqian; Sun, S. S.; Ding, B.; Fu, C. D.; Lou, X. C.; Lin, T.; Zhang, B. X.; Hu, J. F.; Xing, T. Y.; Cao, G. F.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Liu, B. X.; Yang, Yifan; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, L. K.; Li, H. B.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Yin, J. H.; Batozskaya, V.; Liu, Huanhuan; Song, W. M.; Chen, X. T.; Zhang, J. Z.; He, K. L.; Chen, G.; Ablikim, M.; Liu, C. X.; Chang, W. L.; Zhu, K.; Zhao, J. Z.; Yang, Tao; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Zhang, Shuihan; Wang, Z.; Ablikim, M; Liu, Fang; Zhao, J. Y.; Dong, J.; Liu, K.; Shi, J. Y.; Wang, H. P.; Yuan, C. Z.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Li, Ke; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Sun, T.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Yuan, X. Q.; Zhang, Y. H.; Ma, R. Q.; Shi, R. S.; Zheng, W. J.; Zou, J. H.; Zhang, Yao; Liu, J. Y.; Kui, X.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Gong, W. X.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Wang, Meng; Yang, Y. X.; Zhang, Jianyu; Miao, H.; Li, F.; Lu, Z. H.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Dai, H. L.; Li, W. D.; Fang, W. X.; Zeng, Y. J.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Li, Lei; Yuan, L.] Beijing Inst Petrochem Technol, Beijing 100191, Peoples R China.;[Jaeger, S.; Fritsch, M.; Heinsius, F. H.; Kuessner, M.; Wiedner, U. W.; Pelizaeus, M.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Maldaner, S.; Coen, S. C.; Wenzel, C. W.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Briere, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
通讯机构:
[Ablikim, M ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.
摘要:
Using e(+)e(-) collision data corresponding to an integrated luminosity of 7.33 fb(-1) recorded by the BESIII detector at center-of-mass energies between 4.128 and 4.226 GeV, we present an analysis of the decay D-s(+) -> pi(+)pi(-)e(+)nu(e), where the D-s(+) is produced via the process e(+)e(-) -> D-s*(+/-) D-s(-/+). We observe the f(0) (980) in the pi(+)pi(-) system and the branching fraction of the decay D-s(+) -> f(0) (980)e(+)nu(e) with f(0)(980) -> pi(+)pi(-) measured to be (1.72 +/- 0.13(stat) +/- 0.10(syst)) x 10(-3), where the uncertainties are statistical and systematic, respectively. The dynamics of the D-s(+) -> f(0)(980)e(+)nu(e) decay are studied with the simple pole parametrization of the hadronic form factor and the Flatte formula describing the f(0)(980) in the differential decay rate, and the product of the form factor f(+)(f0)(0) and the c -> s Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cs vertical bar is determined for the first time to be f+f0(0)vertical bar V-cs vertical bar = 0.504 +/- 0.017(stat) +/- 0.035(syst). Furthermore, the decay D-s(+) -> f(0)(500)e(+)nu(e) is searched for the first time but no signal is found. The upper limit on the branching fraction of D-s(+) -> f(0)(500)e(+)nu(e), f(0)(500) -> pi(+)pi(-) decay is set to be 3.3 x 10(-4) at 90% confidence level.
作者:
Ablikim, M.;Achasov, M. N.;Adlarson, P.;Aliberti, R.;Amoroso, A.;...
期刊:
PHYSICAL REVIEW D,2024年109(7) ISSN:2470-0010
通讯作者:
Ablikim, M
作者机构:
[Yu, B. X.; Yu, G.; Li, Xiaoyu; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Ma, M. M.; Zhao, Ling; Chen, T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Rong, G.; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Wang, L. L.; Ouyang, Q.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Zhang, Jiawei; Fang, S. S.; Chang, J. F.; Wang, Zongyuan; Liu, Z. A.; Yan, X. Q.; Wu, J. F.; Wang, Yaqian; Sun, S. S.; Ding, B.; Fu, C. D.; Lou, X. C.; Lin, T.; Zhang, B. X.; Xing, T. Y.; Cao, G. F.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Yang, Yifan; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, L. K.; Li, H. B.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Yin, J. H.; Batozskaya, V.; Liu, Huanhuan; Song, W. M.; Chen, X. T.; Zhang, J. Z.; He, K. L.; Nisar, S.; Chen, G.; Ablikim, M.; Liu, C. X.; Chang, W. L.; Zhao, J. Z.; Yang, Tao; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Zhang, Shuihan; Wang, Z.; Ablikim, M; Liu, Fang; Zhao, J. Y.; Dong, J.; Liu, K.; Shi, J. Y.; Wang, H. P.; Yuan, C. Z.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Li, Ke; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Sun, T.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Yuan, X. Q.; Zhang, Y. H.; Ma, R. Q.; Shi, R. S.; Zheng, W. J.; Zou, J. H.; Zhang, Yao; Liu, J. Y.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Gong, W. X.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Wang, Meng; Yang, Y. X.; Miao, H.; Li, F.; Lu, Z. H.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Dai, H. L.; Li, W. D.; Fang, W. X.; Zeng, Y. J.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Li, Lei] Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China.;[Jaeger, S.; Fritsch, M.; Heinsius, F. H.; Kuessner, M.; Pelizaeus, M.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Wiedner, U.; Maldaner, S.; Coen, S. C.; Wenzel, C. W.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Briere, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
通讯机构:
[Ablikim, M ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.
摘要:
Based on a sample of (448.1 +/- 2.9) x 10(6) psi(3686) events collected with the BESIII detector at BEPCII, the decays of psi(3686) -> K-Lambda(Xi) over bar (+) + c.c. with (Xi) over bar -> (Lambda) over bar pi(+), (Lambda) over bar -> (p) over bar pi(+) pthorn are studied. We investigate the two excited resonances, Xi(1690)(-) and Xi(1820)(-), which are each observed with large significance (>> 10 sigma) in the K-Lambda invariant mass distributions. A partial wave analysis is performed, and the spin-parities of Xi(1690)(-) and Xi(1820)(-) are measured to be 1/2(-) and 3/2(-), respectively. The masses, widths, and product branching fractions of Xi(1690)(-) and Xi(1820) are also measured.
摘要:
Since many buildings are not equipped with fresh air systems, many people open windows to allow for natural ventilation while the air conditioner is running. However, prolonged window opening may cause unnecessary energy consumption. Additionally, the diverse ways of window opening lead to significant variations in indoor airflow distribution, consequently impacting ventilation efficiency. Therefore, this study used field experiments and computational fluid dynamics (CFD) to determine the air exchange efficiency and air change rate of singlesided natural ventilation in air-conditioning rooms by fitting the decay curves of tracer gas. CFD simulation was performed using the unsteady Reynolds -averaged Navier-Stokes (RANS) model to examine how window openings affect the room's air distribution, and the computed indoor CO 2 concentration was compared to the corresponding field experiment data. The results show that natural ventilation through the window opening induced constant heat and mass exchange between indoor and outdoor air, which caused extra cooling losses but was globally effective in eliminating indoor contaminants. The air exchange efficiency is influenced to varying degrees by factors such as the air supply register's position, window opening percentage, and window opening position. The air supply register's position exerted the most significant impact at 46.45%. Efficient indooroutdoor air exchange can be achieved by opening windows intermittently. When the window is opened from one side and the opening percentage is 100%, the indoor environment can be improved by opening the window for about 10 min every 39 min for X -direction air supply and about 7 min every 39 min for Y -direction.
摘要:
<jats:title>Abstract</jats:title><jats:p>The super <jats:italic>τ</jats:italic>-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 10<jats:sup>35</jats:sup> cm<jats:sup>−2</jats:sup>·s<jats:sup>−1</jats:sup> or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present <jats:italic>τ</jats:italic>-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.
</jats:p>
作者:
Ablikim, M.;Achasov, M. N.;Adlarson, P.;Ai, X. C.;Aliberti, R.;...
期刊:
Journal of High Energy Physics,2024年2024(1) ISSN:1029-8479
通讯作者:
Ablikim, M
作者机构:
[Yu, B. X.; Yu, G.; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Yang, Y.; Ma, M. M.; Zhang, S.; Chen, T.; Hou, X. T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Rong, G.; Batozskaya, V; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Wang, L. L.; Ouyang, Q.; Liao, Y. P.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Fang, S. S.; Chang, J. F.; Liu, Z. A.; Yang, T.; Yan, X. Q.; Wu, J. F.; Sun, S. S.; Ding, B.; Fu, C. D.; Zhang, Y.; Lou, X. C.; Lin, T.; Zhang, B. X.; Xing, T. Y.; Cao, G. F.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, L. K.; Li, H. B.; Liu, F.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Zhao, L.; Yin, J. H.; Song, W. M.; Chen, X. T.; Zhang, J. Z.; He, K. L.; Liu, H.; Chen, G.; Ablikim, M.; Liu, C. X.; Chang, W. L.; Li, X.; Zhu, K.; Zhao, J. Z.; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Du, M. C.; Wang, Z.; Ablikim, M; Zhao, J. Y.; Dong, J.; Liu, K.; Shi, J. Y.; Wang, H. P.; Yuan, C. Z.; Wang, Y.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Sun, T.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Yuan, X. Q.; Zhang, Y. H.; Ma, R. Q.; Shi, R. S.; Zheng, W. J.; Zou, J. H.; Liu, J. Y.; Kui, X.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Li, K.; Gong, W. X.; Zhang, J.; Xu, W.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Wang, Meng; Yang, Y. X.; Miao, H.; Li, F.; Lu, Z. H.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Dai, H. L.; Li, W. D.; Fang, W. X.; Zeng, Y. J.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Li, Lei] Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China.;[Jaeger, S.; Fritsch, M.; Wiedner, U. W.; Pelizaeus, M.; Kuessner, M. K.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Heinsius, F. H. H.; Coen, S. C.; Wenzel, C. W.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Achasov, M. N.; Nikolaev, I. B.; Muchnoi, N. Yu] Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.
通讯机构:
[Ablikim, M ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.
摘要:
<jats:title>A<jats:sc>bstract</jats:sc>
</jats:title><jats:p>Using (10087 ± 44) × 10<jats:sup>6</jats:sup><jats:italic>J</jats:italic>/<jats:italic>ψ</jats:italic> events collected with the BESIII detector at the BEPCII <jats:italic>e</jats:italic><jats:sup>+</jats:sup><jats:italic>e</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup> storage ring at the center-of-mass energy of <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \sqrt{s} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msqrt>
<mml:mi>s</mml:mi>
</mml:msqrt>
</mml:math></jats:alternatives></jats:inline-formula> = 3.097 GeV, we present a search for the rare semi-muonic charmonium decay <jats:italic>J</jats:italic>/<jats:italic>ψ</jats:italic> → <jats:italic>D</jats:italic><jats:sup>−</jats:sup><jats:italic>μ</jats:italic><jats:sup>+</jats:sup><jats:italic>ν</jats:italic><jats:sub><jats:italic>μ</jats:italic></jats:sub> + c.c.. Since no significant signal is observed, we set an upper limit of the branching fraction to be <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \mathcal{B} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>B</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> (<jats:italic>J</jats:italic>/<jats:italic>ψ</jats:italic> → <jats:italic>D</jats:italic><jats:sup>−</jats:sup><jats:italic>μ</jats:italic><jats:sup>+</jats:sup><jats:italic>ν</jats:italic><jats:sub><jats:italic>μ</jats:italic></jats:sub> + c.c.) < 5.6 × 10<jats:sup><jats:italic>−</jats:italic>7</jats:sup> at 90% confidence level. This is the first search for the weak decay of charmonium with a muon in the final state.</jats:p>
作者:
Ablikim, M.;Achasov, M. N.;Adlarson, P.;Ai, X. C.;Aliberti, R.;...
期刊:
Journal of High Energy Physics,2024年2024(1) ISSN:1029-8479
通讯作者:
Ablikim, M
作者机构:
[Li, Xiaoyu; Hu, T.; Chen, T.; Hou, X. T.; Heng, Y. K.; Ji, Q.; Guan, C. Y.; Liao, Y. P.; Ji, X. B.; Dong, M. Y.; Fang, S. S.; Chang, J. F.; Ding, B.; Fu, C. D.; Lin, T.; Cao, G. F.; Fu, Y. W.; Jiang, X. S.; Kiuchi, R.; Gu, M. H.; Dong, L. Y.; Li, L. J.; Fang, Y.; Ji, X. L.; Li, L. K.; Li, H. B.; Liang, H.; Huang, Y. P.; Batozskaya, V.; Chen, X. T.; He, K. L.; Chen, G.; Ablikim, M.; Chang, W. L.; Jing, M. Q.; Chen, Y. B.; Du, M. C.; Ablikim, M; Dong, J.; Chen, M. L.; Hou, G. Y.; Hou, Z. L.; Liu, B. J.; Li, Ke; Chen, H. S.; Cao, N.; Deng, Z. Y.; Cai, X.; Kui, X.; Li, W. G.; Fang, J.; Hu, H. M.; Gong, W. X.; Hu, Y.; Li, F.; Li, G.; Dai, H. L.; Li, W. D.; Fang, W. X.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Li, Lei] Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China.;[Jaeger, S.; Fritsch, M.; Kuessner, M.; Pelizaeus, M.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Wiedner, U.; Heinsius, F. H. H.; Coen, S. C.; Wenzel, C. W.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Achasov, M. N.; Nikolaev, I. B.; Muchnoi, N. Yu.] Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.
通讯机构:
[Ablikim, M ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.
关键词:
e(+)-e(-) Experiments;Particle and Resonance Production;Spectroscopy
摘要:
<jats:title>A<jats:sc>bstract</jats:sc>
</jats:title><jats:p>Based on <jats:italic>e</jats:italic><jats:sup>+</jats:sup><jats:italic>e</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup> collision data collected at center-of-mass energies from 2.000 to 3.080 GeV by the BESIII detector at the BEPCII collider, a partial wave analysis is performed for the process <jats:italic>e</jats:italic><jats:sup>+</jats:sup><jats:italic>e</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup> → <jats:inline-formula><jats:alternatives><jats:tex-math>$$ {K}_S^0{K}_L^0 $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>K</mml:mi>
<mml:mi>S</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
<mml:msubsup>
<mml:mi>K</mml:mi>
<mml:mi>L</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula><jats:italic>π</jats:italic><jats:sup>0</jats:sup>. The results allow the Born cross sections of the process <jats:italic>e</jats:italic><jats:sup>+</jats:sup><jats:italic>e</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup> → <jats:inline-formula><jats:alternatives><jats:tex-math>$$ {K}_S^0{K}_L^0 $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>K</mml:mi>
<mml:mi>S</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
<mml:msubsup>
<mml:mi>K</mml:mi>
<mml:mi>L</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula><jats:italic>π</jats:italic><jats:sup>0</jats:sup>, as well as its subprocesses <jats:italic>e</jats:italic><jats:sup>+</jats:sup><jats:italic>e</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup> → <jats:italic>K</jats:italic><jats:sup>∗</jats:sup>(892)<jats:sup>0</jats:sup><jats:inline-formula><jats:alternatives><jats:tex-math>$$ \overline{K} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mover>
<mml:mi>K</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
</mml:math></jats:alternatives></jats:inline-formula><jats:sup>0</jats:sup> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$ {K}_2^{\ast } $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>K</mml:mi>
<mml:mn>2</mml:mn>
<mml:mo>∗</mml:mo>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula>(1430)<jats:sup>0</jats:sup><jats:inline-formula><jats:alternatives><jats:tex-math>$$ \overline{K} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mover>
<mml:mi>K</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
</mml:math></jats:alternatives></jats:inline-formula><jats:sup>0</jats:sup> to be measured. The Born cross sections for <jats:italic>e</jats:italic><jats:sup>+</jats:sup><jats:italic>e</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup> → <jats:inline-formula><jats:alternatives><jats:tex-math>$$ {K}_S^0{K}_L^0 $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>K</mml:mi>
<mml:mi>S</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
<mml:msubsup>
<mml:mi>K</mml:mi>
<mml:mi>L</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula><jats:italic>π</jats:italic><jats:sup>0</jats:sup> are consistent with previous measurements by BaBar, but with substantially improved precision. The Born cross section lineshape of the process <jats:italic>e</jats:italic><jats:sup>+</jats:sup><jats:italic>e</jats:italic><jats:sup><jats:italic>−</jats:italic></jats:sup><jats:italic>K</jats:italic><jats:sup>∗</jats:sup>(892)<jats:sup>0</jats:sup><jats:inline-formula><jats:alternatives><jats:tex-math>$$ \overline{K} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mover>
<mml:mi>K</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
</mml:math></jats:alternatives></jats:inline-formula><jats:sup>0</jats:sup> is consistent with a vector meson state around 2.2 GeV with a significance of 3.2<jats:italic>σ</jats:italic>. A Breit-Wigner fit determines its mass as <jats:italic>M</jats:italic><jats:sub><jats:italic>Y</jats:italic></jats:sub> = (2164<jats:italic>.</jats:italic>7 <jats:italic>±</jats:italic> 9<jats:italic>.</jats:italic>1 <jats:italic>±</jats:italic> 3<jats:italic>.</jats:italic>1) MeV<jats:italic>/c</jats:italic><jats:sup>2</jats:sup> and its width as Γ<jats:sub><jats:italic>Y</jats:italic></jats:sub> = (32<jats:italic>.</jats:italic>4 <jats:italic>±</jats:italic> 21<jats:italic>.</jats:italic>0 <jats:italic>±</jats:italic> 1<jats:italic>.</jats:italic>8) MeV.</jats:p>
摘要:
AIM: To explore the association of hyperhomocysteinaemia (HHcy) and diabetes synergies with cardiovascular events in the adult population of northern China. METHODS: Data were collected from the Asymptomatic Polyvascular Abnomalities Community study for 2010 to 2019. Serum homocysteine (Hcy) levels were determined by enzyme-linked immunosorbent assay. The participants were categorized into four groups based on their Hcy levels and diabetes status: non-diabetes/non-HHcy, non-diabetes/HHcy, diabetes/non-HHcy and diabetes/HHcy. The composite endpoint consisted of the occurrence of first-ever stroke, myocardial infraction (MI) or all-cause mortality. Cox regression analyses were performed to evaluate the associations of diabetes and HHcy with cardiovascular disease (CVD) events. RESULTS: In total, 5278 participants were eligible (average age 55.1 years, 60% male). Over a follow-up of 9.1 years, 618 events were identified, 202 stroke, 52 MI and 406 all-cause deaths. Compared with the non-diabetes/non-HHcy group, hazard ratios with 95% confidence intervals in the diabetes/HHcy group for stroke, MI, major adverse cardiovascular event (MACE), all-cause death and composite endpoint were 1.85 (1.12-3.04), 1.33 (0.42-4.23), 1.78 (1.13-2.80), 2.24 (1.56-3.23) and 1.97 (1.47-2.65), respectively. Significant interactions between HHcy and diabetes status were found for stroke, MI and MACE (P for interaction = .002, .027 and .044, respectively). In addition, the association of diabetes/HHcy with stroke was modified by age (< 60 and ≥ 60 years; P for interaction = .016). CONCLUSIONS: The findings highlight the synergistic impact of diabetes and HHcy on CVD. Joint assessments of diabetes and Hcy levels should be emphasized for risk stratification and primary prevention of CVD.
摘要:
Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg− 1), curcumin (Cur, 40 mg·kg− 1) and metformin (Met, 50 mg·kg− 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml− 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.
摘要:
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
作者机构:
[唐鹏; 唐虎; 易礼杨; 李必文] School of Mechanical Engineering, University of South China, Hengyang 421001, Hunan, China;[谭文甫] Department of Orthopaedics Trauma, the Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
摘要:
Parallel infill sampling is a promising approach to improve the efficiency of multi-fidelity multi-objective Bayesian optimization (MOBO). In existing literature, the number of infill samples per iteration is typically limited to 10. Additionally, the application of the multi-fidelity MOBO method in engineering optimization designs with over 100 variables is rare. To that end, a novel generalized expected improvement matrix (GEIM) criterion is proposed by using generalized reference values for the element in expected improvement matrix. Parallel infill sampling strategy based on GEIM is developed and incorporated into the multi-fidelity MOBO framework. The distinct feature of the proposed method is that the number of infill samples at each iteration can be significantly larger than existing methods (i.e. as much as 100), so as to further enhance the optimization efficiency. Empirical experiment results on analytic problems show that the proposed parallel multi-fidelity MOBO method is highly competitive in comparison with existing methods. To address the curse of dimensionality in optimizing multi-stage axial compressor, an efficient modeling method for the Hierarchical Kriging (HK) is incorporated. The HK predictor for the efficiency of the 3-stage compressor with 144 variables is built in 16.71 s with acceptable accuracy. Remarkable improvements over the two objectives of the 3-stage compressor with 144 variables are achieved simultaneously within 870 high-fidelity CFD simulations.
作者机构:
[Dewen Tang] School of Mechanical Engineering, University of South China, Hengyang, China;Spallation Neutron Source Science Center, Dongguan, China;[Quan Ji] Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China;[Chang Shu] School of Mechanical Engineering, University of South China, Hengyang, China<&wdkj&>Spallation Neutron Source Science Center, Dongguan, China;[Junsong Zhang] Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China<&wdkj&>Spallation Neutron Source Science Center, Dongguan, China
通讯机构:
[Junsong Zhang] I;Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China<&wdkj&>Spallation Neutron Source Science Center, Dongguan, China
摘要:
Design the sextupole precision mover for the Southern Advanced Photon Source that has requirements exceeding commercially available machines. The design of the mover has been verified to meet the requirements through a combination of static and dynamic simulations using ANSYS software, as well as relevant experimental testing. The mover we constructed has an absolute positioning error of 2 and 3 µm, a maximum inclination angle of 1.55″ and 5.67″ in the horizontal and vertical motion directions respectively under a 400 kg load. Its vibration force transmission rate is 1.065. The mover utilizes a non-coupled structure consisting of four layers of stainless steel plates, which exhibits good manufacturability. It is capable of achieving high precision and stability under a 400 kg load, meeting the requirements.