通讯机构:
[Tang, HY ] C;Cent Hosp Shaoyang, Dept Neurol, Shaoyang, Hunan, Peoples R China.;Cent Hosp Shaoyang, Stroke Ctr, Shaoyang, Hunan, Peoples R China.
关键词:
Crohn's disease;stricture;surgery
摘要:
<jats:title>Abstract</jats:title>
<jats:sec>
<jats:title>Background:</jats:title>
<jats:p>Stricture in patients with Crohn’s disease (CD) carries a high risk of CD-related surgery in the course of the disease. The aim of this study was to assess the rate of occurrence of CD-related surgery and to determine baseline risk factors predicting subsequent surgery in this patient group.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Methods:</jats:title>
<jats:p>Patients registered with stricturing CD were included. All baseline and follow-up data were collected retrospectively. Patients attended the clinic for follow-up at week 14 to assess their response to infliximab (IFX). CD-related surgery was the observational endpoint. Univariate and multivariate Cox regression analyses were used.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Results:</jats:title>
<jats:p>A total of 123 patients with stricturing CD were included in this study. The cumulative risk of CD-related surgery for years 1–5 after diagnosis was 18.0%, 26.7%, 32.6%, 40.7%, and 46.4%, respectively. Prior gastrointestinal (GI) surgery, low body mass index (BMI), and high platelet count might be risk factors for future CD-related surgery. With 97 participants treated by IFX, prior GI surgery and primary non-response (PNR) to IFX correlated with future CD-related surgery.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Conclusion:</jats:title>
<jats:p>Prior GI surgery, BMI, and platelet counts were related to future CD-related surgery. Patients who were PNR to IFX had a higher risk of CD-related surgery in the future.</jats:p>
</jats:sec>
摘要:
To improve the laser cleaning surface quality of rust layers in Q390 steel, a method of determining the optimal cleaning parameters is proposed that is based on response surface methodology and the second-generation non-dominated sorting genetic algorithm (NSGA-II). It involves constructing a mathematical model of the input variables (laser power, cleaning speed, scanning speed, and repetition frequency) and the objective values (surface oxygen content, rust layer removal rate, and surface roughness). The effects of the laser cleaning process parameters on the cleaning surface quality were analyzed in our study, and accordingly, NSGA-II was used to determine the optimal process parameters. The results indicate that the optimal process parameters are as follows: a laser power of 44.99 W, cleaning speed of 174.01 mm/min, scanning speed of 3852.03 mm/s, and repetition frequency of 116 kHz. With these parameters, the surface corrosion is effectively removed, revealing a distinct metal luster and meeting the standard for surface treatment before welding.
摘要:
Purpose; Investigating the effects of unequal sub-arc personalized collimator angle selection on the quality of Volumetric Modulated Arc Therapy (VMAT) plans for treating multiple brain metastases. Methods: This study included 21 patients, each with 2-4 target volumes of multiple brain metastases. Two stereotactic radiotherapy (SRT) approaches were utilized: sub-arc collimator VMAT (SAC-VMAT) and fixed collimator VMAT (FC-VMAT). In the SAC-VMAT group, multi-leaf collimators (MLC) shaped the target area, dividing the full arc into four unequal sub-arcs under the beam's eye view (BEV). Each sub-arc had an appropriate collimator angle selected to mitigate 'island blocking problems'. Conversely, the FC-VMAT group used a fixed collimator angle of 15 degrees or 345 degrees. A comparative analysis of the dosimetric parameters of the target volumes and normal tissues, along with the monitor units (MU), was conducted between the two groups. Results: The mean dose and dose-volume to normal brain tissue (2-26 Gy, with a step of 2 Gy) were significantly lower in the SAC-VMAT group (P < 0.01). There was no statistical difference between the two groups in dose to the target volumes, conformity index (CI), homogeneity index (HI), and other normal tissues (P > 0.05). Compared with the FA-VMAT group, the SAC-VMAT group significantly reduced the gradient index (GI) (4.5 +/- 0.59 vs 5.2 +/- 0.75, P < 0.001) and MU (1774.33 +/- 181.77 vs 2001.0 +/- 344.86, P < 0.001). Notably, with an increase in the number of PTV, the SAC-VMAT group demonstrated more significant improvements in the dose-volume of normal brain tissue, GI, and MU. Conclusions: In this study, personalized selection of the unequal sub-arc collimator angle ensured the prescribed dose to the PTV, CI, and HI, while significantly reducing the GI, MU, and the dose to normal brain tissue in the VMAT plan for multi-target brain metastases in the cohort of cases with 2-4 target volumes. Particularly as the number of targets increase, the advantages of this method become more pronounced.
摘要:
BACKGROUND: Depression is a highly prevalent comorbidity arising in patients with Parkinson's disease (PD). However, depression in patients with PD is poorly treated. Hydrogen sulfide (H(2)S), a neuromodulator, has the potential to relieve depression. OBJECTIVE: To investigate whether H(2)S attenuates depression-like behaviours in a rat model of PD and examine the underlying mechanisms. METHODS: We utilised rotenone to develop a PD model with subcutaneous injections in the dorsal cervical region of Sprague-Dawley rats. The depression-like behaviours in the rotenone-induced PD model rats were assessed through forced swimming, tail suspension, open field, novelty-suppressed feeding, and elevated plus-maze tests. The expression of postsynaptic density protein-95 and synapsin-1, related to synaptic plasticity, was detected using Western blot in the hippocampus. The hippocampal ultrastructure, including the synaptic density, length of the synaptic active zone, postsynaptic density thickness, and synaptic gap width, was detected using transmission electron microscopy. RESULTS: We proved that sodium hydrosulfide (NaHS; a donor of H(2)S) significantly attenuated the depression-like behaviours and disorders of hippocampal synaptic plasticity in rotenone-induced PD rats. Furthermore, inhibition of the hippocampal Warburg effect by 2-deoxyglucose abolished NaHS-enhanced hippocampal synaptic plasticity and reversed NaHS-attenuated depression-like behaviours in the rotenone-induced PD rats. CONCLUSION: H(2)S attenuates PD-associated depression by improving the hippocampal synaptic plasticity in a hippocampal Warburg effect-dependent manner.
摘要:
<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>Development of shielding materials for <jats:sup>222</jats:sup>Rn and γ radiation has crucial implications for ensuring the safety of individuals. This paper reports the synthesis of modified graphene nanosheets (MGNPs) via the reaction of KH560 with graphene nanosheets (GNPs), while melt blending and hot‐press molding technique were used to fabricate a multifunctional polymer composite shielding material, MGNP/WB/PMMA (polymethyl methacrylate). Successful synthesis of MGNP was confirmed by Fourier transform infrared spectroscopy, and scanning electron microscope (SEM) analysis was utilized to assess the distribution of functional fillers within the cross‐section of the polymer composite. Additionally, thermogravimetric analysis (TGA) demonstrated that MGNP and WB particles enhance the thermal stability of the polymer composite materials. Compared to pure PMMA, 98.7% decrease in the radon diffusion coefficient was observed for MGNP1.5 wt%/PMMA composite material. In addition to enhance the radon‐blocking characteristics of the polymer composites, inclusion of WB particles also boosts their shielding capacity against gamma radiation. The <jats:sup>222</jats:sup>Rn diffusion coefficient of MGNP1.5 wt%/WB25wt%/PMMA polymer composite material decreased by 99.6% and at energies of 60 KeV, 80 KeV, 122 KeV, 365 KeV, the mass attenuation coefficient (MAC) for the composite material increased by 0.79, 1.97, 0.57, and 0.05 cm<jats:sup>2</jats:sup>/g, respectively, compared to pure PMMA.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet">
<jats:list-item><jats:p>The PMMA composite materials doped with graphene nanosheets demonstrate outstanding resistance to <jats:sup>222</jats:sup>Rn.</jats:p></jats:list-item>
<jats:list-item><jats:p>Graphene nanosheets modified by KH560 exhibit favorable dispersion within PMMA.</jats:p></jats:list-item>
<jats:list-item><jats:p>WB can further enhance the radon resistance of MGNP/WB/PMMA composite materials.</jats:p></jats:list-item>
<jats:list-item><jats:p>The polymer composites exhibit excellent <jats:sup>222</jats:sup>Rn and gamma ray shielding properties.</jats:p></jats:list-item>
</jats:list></jats:p></jats:sec>
期刊:
Biological Trace Element Research,2024年202(11):4961-4977 ISSN:0163-4984
通讯作者:
Peng, CY;Liao, HQ
作者机构:
[Peng, Cuiying; Wang, Die; Zhou, Cuilan; Yin, Dan; Mao, Rui; Yu, Ping; Liu, Jun; Li, Suyun] Univ South China, Inst Cytol & Genet,Key Lab Typ Environm Pollut & H, Sch Basic Med Sci,Dept Educ,Key Lab Hengyang City, Hengyang Med Sch,Key Lab Ecol Environm & Crit Huma, Hengyang 421001, Hunan, Peoples R China.;[Nie, Yulin; Liao, Hongqing] Univ South China, Affiliated Hosp 2, Dept Obstet & Gynecol, 30 Jiefang Rd, Hengyang 421001, Hunan, Peoples R China.
通讯机构:
[Liao, HQ ; Peng, CY ] U;Univ South China, Inst Cytol & Genet,Key Lab Typ Environm Pollut & H, Sch Basic Med Sci,Dept Educ,Key Lab Hengyang City, Hengyang Med Sch,Key Lab Ecol Environm & Crit Huma, Hengyang 421001, Hunan, Peoples R China.;Univ South China, Affiliated Hosp 2, Dept Obstet & Gynecol, 30 Jiefang Rd, Hengyang 421001, Hunan, Peoples R China.
关键词:
Polycystic ovary syndrome;Plasma metal levels;ART outcomes;in vitro fertilization
摘要:
The objective of this study is to explore the correlation of metal levels with assisted reproductive technology (ART) outcomes in polycystic ovary syndrome (PCOS) patients. The individuals were recruited who met the research criteria, only tubal factor or male infertility served as the control group (n = 40) and patient group was PCOS patients (n = 35). Individuals (n = 75) were divided into PCOS group (n = 35) and control group (n = 40). The normal body mass index (BMI) group (control) includes women with BMI < 25kg/m(2) in PCOS group (n = 24) and control group (n = 33), and BMI ≥ 25kg/m(2) in PCOS group (n = 11) and control group (n = 7). We performed an analysis of insulin resistance (IR) (n = 15) group and without insulin resistance (NIR) group (n = 20) in PCOS patient and control patients. Comparing difference demographic data, ART outcomes and the metal levels in every group respectively, the correlation of metal levels and ART outcomes in control participants and PCOS patients were analyzed by the Spearman correlation analysis, and multiple linear regression model was used to examine the association between the concentration of 19 metals and ART outcomes in PCOS group and control group. Plasma manganese (Mn), titanium (Ti), sodium (Na), magnesium (Mg), copper (Cu), calcium (Ca)/Mg ratio, and Cu/zinc (Zn) ratio levels in PCOS patients were higher than that in control, while Zn and Ca levels were lower in PCOS patients than that in control. The Mg levels had a positive connection with the number of eggs recovered, and the iron (Fe) levels were positively associated with the number of transplanted embryos in PCOS-IR. In PCOS-NIR, Mn levels positively correlated with the number of follicles and the number of good embryos. Silver (Ag) levels were negatively correlated with the number of follicles, and aluminum (Al) levels were negatively related with the normal fertilization and the number of good embryos. The Spearman analysis in PCOS-BMI ≥ 25 group exhibited that nickel (Ni) levels were negatively associated with the number of follicles. The plasma metal levels seem to affect the clinical manifestations and in vitro fertilization outcomes in assisted reproduction.
摘要:
IntroductionRadiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear.ObjectivesTo investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF.MethodsDNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR.ResultsThe expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs.ConclusionOur study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF. DNA-PKcs deficiency accelerates the process of EMT by inhibiting AKT1 phosphorylation, thus stabilising Twist1, which ultimately contributes to RIPF. The radioprotective drug VND3207 effectively alleviates RIPF by targeting DNA-PKcs to prevent radiation-induced EMT. This study revealed a novel pathway, DNA-PKcs/AKT1/Twist1 as a crucial signalling pathway for RIPF. image
通讯机构:
[Zhou, PK; Gu, YQ ] B;Beijing Inst Radiat Med, Beijing Key Lab Radiobiol, Beijing 100850, Peoples R China.;Univ South China, Hengyang Med Coll, Hengyang 421001, Peoples R China.;Hebei Univ, Coll Life Sci, Baoding 071001, Peoples R China.
关键词:
TNKS1BP1;Type II alveolar epithelial cells;Senescence;Radiation induced lung injury
摘要:
Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI. Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice. Senescent AECII induced Senescence-Associated Secretory Phenotype (SASP), consequently activating fibroblasts and macrophages to promote RILI development. In response to IR, elevated TNKS1BP1 interacted with and decreased CNOT4 to suppress EEF2 degradation. Ectopic expression of EEF2 accelerated AECII senescence. Using a model system of TNKS1BP1 knockout (KO) mice, we demonstrated that TNKS1BP1 KO prevents IR-induced lung tissue senescence and RILI. Notably, this study suggested that a regulatory mechanism of the TNKS1BP1/CNOT4/EEF2 axis in AECII senescence may be a potential strategy for RILI.
摘要:
BACKGROUND: Atherosclerosis (AS) is the most prevalent cardiovascular disease, with an exceptionally high burden. High-fat diet (HFD) is a popular diet behavior, whereas low-dose radiation (LDR) is an environmental physical factor. There is evidence to suggest that an HFD may exacerbate the onset of atherosclerosis. Whether the combination effect of HFD and LDR would have potential on atherosclerosis development remains incompletely unclear. METHODS: In this study, ApoE(-/-) mice were used as atherosclerosis model animals to investigate the combination effects of HFD and LDR (10×0.01Gy, or 20×0.01Gy) on vascular lesions. Doppler ultrasound imaging, H&E staining, oil red O staining, western blotting, and immunohistochemistry (IHC) were used to assess the pro-atherosclerotic effects. LC-MS was used to detect the non-targeted lipidomic. RESULTS: Long-term exposure of low-dose radiation at an accumulated dose of 0.2Gy significantly increased the occurrence of vascular stiffness and the aortic lesion in ApoE(-/-) mice. The synergistic effect of HFD and LDR was observed in the development of atherosclerosis, which might be linked to both the dysbiosis of lipid metabolism and the stimulation of the inflammatory signaling system. Moreover, LDR but not HFD can activate the cGAS-STING signaling through increasing the yield of cytosolic mitochondrial DNAs as well as the expression of cGAS protein. The activation of cGAS-STING signal triggers the release of IFN-α/-β, which functions as an inflammatory amplifier in the formation of atherosclerotic plaque. CONCLUSION: The current study offers fresh insights into the risks and mechanism that underlie the development of atherosclerosis by LDR, and there is a combination effect of LDR and HFD with the involvement of cGAS-STING signal pathway.
作者机构:
[Xie, Dafei; Gu, Yongqing; Wang, Ping; Zhu, Jiaojiao; Guan, Hua; Zhou, Lin; Yan, Ziyan; Liu, Yuhao; Gao, Shanshan; Zhou, Ping-Kun] Beijing Key Laboratory for Radiobiology Beijing Institute of Radiation Medicine Beijing China;[Chen, Huixi; Gu, Yongqing; Liang, Xinxin; Zhou, Shenghui; Ao, Xingkun] Hengyang Medical College University of South China Hengyang China;[Hou, Yifan; Gu, Yongqing] College of Life Sciences Hebei University Baoding China
关键词:
DNA‐PKcs;NHEJ;RET/PTC1 rearrangement;low‐dose ionizing radiation;thyroid cancer
摘要:
We found that low‐dose IR can induce RET/PTC1 rearrangement in N‐thy‐ori‐3‐1 cell and there is a dose‐dependent manner between dose and rearrangement rate. We showed that this progress of IR‐induced RET/PTC1 rearrangement requires NHEJ and not HR. Moreover, DNA‐PKcs inhibition decreased the repair efficiency of NHEJ. Importantly, the RET/PTC1 rearrangement induced by IR was significantly decreased by DNA‐PKcs. Abstract Thyroid cancer incidence increases worldwide annually, primarily due to factors such as ionizing radiation (IR), iodine intake, and genetics. Papillary carcinoma of the thyroid (PTC) accounts for about 80% of thyroid cancer cases. RET/PTC1 (coiled‐coil domain containing 6 [CCDC6]‐rearranged during transfection) rearrangement is a distinctive feature in over 70% of thyroid cancers who exposed to low doses of IR in Chernobyl and Hiroshima‒Nagasaki atomic bombings. This study aims to elucidate mechanism between RET/PTC1 rearrangement and IR in PTC. N‐thy‐ori‐3‐1 cells were subjected to varying doses of IR (2/1/0.5/0.2/0.1/0.05 Gy) of IR at different days, and result showed low‐dose IR‐induced RET/PTC1 rearrangement in a dose‐dependent manner. RET/PTC1 has been observed to promote PTC both in vivo and in vitro. To delineate the role of different DNA repair pathways, SCR7, RI‐1, and Olaparib were employed to inhibit non‐homologous end joining (NHEJ), homologous recombination (HR), and microhomology‐mediated end joining (MMEJ), respectively. Notably, inhibiting NHEJ enhanced HR repair efficiency and reduced IR‐induced RET/PTC1 rearrangement. Conversely, inhibiting HR increased NHEJ repair efficiency and subsequent RET/PTC1 rearrangement. The MMEJ did not show a markable role in this progress. Additionally, inhibiting DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) decreased the efficiency of NHEJ and thus reduced IR‐induced RET/PTC1 rearrangement. To conclude, the data suggest that NHEJ, rather than HR or MMEJ, is the critical cause of IR‐induced RET/PTC1 rearrangement. Targeting DNA‐PKcs to inhibit the NHEJ has emerged as a promising therapeutic strategy for addressing IR‐induced RET/PTC1 rearrangement in PTC.
作者机构:
[Sun, Z Q; Wen, S P; Hou, G Y; Li, Xiaoyu; Liang, H; Dai, H L; Yuan, C Z; Zhao, G; Xu, W; Xiao, S Y; Zhao, Ling; Ma, Q M; Lou, X C; Hou, X T; Zhang, P; Tang, G Y; Batozskaya, V; Liu, P L; Wang, X N; Xiang, B H; Zhang, Z D; Cao, G F; Sun, H K; Yan, X Q; Wang, Y F; Kiuchi, R; Li, Q M; Wang, Y Q; Sun, Y Z; Zhang, J Z; Zhang, J W; Zhang, J Y; Zhang, Z H; Han, T T; Liu, C X; Mo, X H; Hu, Y; Fang, Y Q; Hu, T; Song, W M; Zhu, Z A; Wu, Z; Zheng, W J; Chang, J F; Yuan, Y; Deng, Z Y; Yang, Yifan; Lu, J G; Yu, G; Hu, H M; Zheng, J P; Ma, R Q; Ouyang, Q; Fang, W X; Liu, Huanhuan; Chen, T; Yuan, S C; Fu, Y W; Rong, G; Chen, G; Ding, B; Liu, B J; Zhu, K J; Hou, Z L; Ablikim, M; Xu, C F; Cai, X; Li, L K; Yang, Tao; Li, L J; Ma, H L; Qiu, J F; Zhang, Shuihan; Jiang, D; Liu, Fang; Ma, X T; Ma, X Y; Lu, Y P; Heng, Y K; Qin, Z H; Fang, S S; Wang, B; Sun, S S; Wang, K; Ping, R G; Du, M C; Wang, Z; Liu, H M; Mao, Z P; Yin, J H; Yu, B X; Gong, W X; Kui, X; Lu, Z H; Chen, M L; Li, Ke; Zhu, K; Chen, Z Y; Ji, X L; Zhang, B X; Ji, X B; Zhang, B L; Guan, C Y; Jing, M Q; Li, G; Shi, J Y; Li, F; Lin, T; Zhang, A Q; Li, X; Li, H B; Lu, X L; Xu, G F; Chen, X T; Yang, H X; Gu, M H; Zhang, Yao; Wang, Z Y; Zhang, Y H; Zou, J H; Wu, L H; Wu, L J; Zhang, H Q; Zhou, L P; Chen, H S; Shao, L G; Fu, C D; Zhang, H C; Zhao, J Y; Zhao, J Z; Xing, T Y; Li, W D; Li, W G; He, K L; Ma, M M; Qi, F Z; Qian, S; Yang, Y X; Zhang, X M; Zhang, H Y; Zhao, Y B; Chen, Y B; Sun, G X; Wang, L L; Ning, Z; Huang, Y P; Wang, Meng; Ma, J L; Dong, L Y; Luo, X L; Jiang, X S; Fang, Y; Fang, J; Ye, M; Shen, X Y; Dong, M Y; Cao, N; Miao, H; Shi, X; Ji, Q; Wu, J F; Liu, Z A; Ji, W; Shen, H F; Xie, Y G; Dong, J; Liu, J Y] Institute of High Energy Physics, Beijing 100049, People's Republic of China;[Achasov, M N; Muchnoi, N Yu; Nikolaev, I B] Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia;[Adlarson, P; Schoenning, K; Thoren, V; Kupsc, A; Wolke, M; Johansson, T] Uppsala University, Box 516, SE-75120 Uppsala, Sweden;[Fritsch, M; Heinsius, F H; Wiedner, U; Wollenberg, L; Feldbauer, F; Hölzken, F; Afedulidis, O; Holtmann, T; Hanisch, F; Pelizaeus, M; de Boer, R E; Kopf, B; Kuessner, M] Bochum Ruhr-University, D-44780 Bochum, Germany;[Li, D M; Liu, Y; Zhang, H; Zhang, J; Du, S X; Yu, Y C; Yan, W C; Ai, X C; Zhao, S J; Ke, B C; Zhang, Y T; Ge, L; Qiao, X K] Zhengzhou University, Zhengzhou 450001, People's Republic of China
摘要:
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e^{+}e^{-}→η+X, normalized by the total cross section of e^{+}e^{-}→hadrons, is measured at eight center-of-mass energy points from 2.0000 to 3.6710GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy compared to the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
作者机构:
[Sun, Z Q; Wen, S P; Hou, G Y; Liang, H; Dai, H L; Yuan, C Z; Zhao, G; Xu, W; Zhao, L; Xiao, S Y; Ma, Q M; Lou, X C; Hou, X T; Zhang, P; Zhang, Y; Tang, G Y; Liu, F; Batozskaya, V; Liu, P L; Wang, X N; Xiang, B H; Zhang, Z D; Cao, G F; Sun, H K; Yan, X Q; Wang, Y F; Kiuchi, R; Li, Q M; Wang, Y Q; Sun, Y Z; Zhang, J Z; Zhang, J W; Zhang, J Y; Zhang, Z H; Han, T T; Yang, T; Liu, C X; Mo, X H; Hu, Y; Fang, Y Q; Hu, T; Song, W M; Zhu, Z A; Wu, Z; Zheng, W J; Chang, J F; Yuan, Y; Deng, Z Y; Lu, J G; Yu, G; Hu, H M; Zheng, J P; Zeng, Y J; Ma, R Q; Ouyang, Q; Fang, W X; Chen, T; Yuan, S C; Fu, Y W; Rong, G; Chen, G; Ding, B; Liu, B J; Zhu, K J; Hou, Z L; Ablikim, M; Xu, C F; Cai, X; Li, L K; Li, L J; Ma, H L; Qiu, J F; Jiang, D; Ma, X T; Ma, X Y; Lu, Y P; Heng, Y K; Qin, Z H; Fang, S S; Wang, B; Sun, S S; Wang, K; Ping, R G; Du, M C; Wang, Z; Liu, H M; Liao, Y P; Zhang, S H; Mao, Z P; Yin, J H; Yu, B X; Liu, H H; Gong, W X; Kui, X; Lu, Z H; Chen, M L; Zhu, K; Chen, Z Y; Ji, X L; Zhang, B X; Ji, X B; Zhang, B L; Guan, C Y; Jing, M Q; Li, K; Li, G; Shi, J Y; Li, F; Lin, T; Zhang, A Q; Li, X; Li, H B; Lu, X L; Xu, G F; Chen, X T; Yang, H X; Gu, M H; Wang, Z Y; Zhang, Y H; Zou, J H; Li, X Y; Wu, L H; Wu, L J; Zhang, H Q; Zhou, L P; Chen, H S; Shao, L G; Fu, C D; Zhang, H C; Zhao, J Y; Zhao, J Z; Xing, T Y; Yang, Y F; Li, W D; Li, W G; He, K L; Ma, M M; Qi, F Z; Qian, S; Yang, Y X; Zhang, X M; Zhang, H Y; Zhao, Y B; Chen, Y B; Sun, G X; Wang, L L; Ning, Z; Huang, Y P; Ma, J L; Dong, L Y; Luo, X L; Jiang, X S; Fang, Y; Fang, J; Ye, M; Shen, X Y; Dong, M Y; Cao, N; Miao, H; Shi, X; Ji, Q; Wu, J F; Liu, Z A; Ji, W; Shen, H F; Xie, Y G; Dong, J; Liu, J Y] Institute of High Energy Physics, Beijing 100049, People's Republic of China;[Achasov, M N; Muchnoi, N Yu; Nikolaev, I B] Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia;[Adlarson, P; Schoenning, K; Thoren, V; Kupsc, A; Wolke, M; Johansson, T] Uppsala University, Box 516, SE-75120 Uppsala, Sweden;[Fritsch, M; Heinsius, F H; Wiedner, U; Wollenberg, L; Feldbauer, F; Hölzken, F; Afedulidis, O; Holtmann, T; Hanisch, F; Pelizaeus, M; de Boer, R E; Kopf, B; Kuessner, M] Bochum Ruhr-University, D-44780 Bochum, Germany;[Li, D M; Liu, Y; Zhang, H; Zhang, J; Du, S X; Yu, Y C; Yan, W C; Ai, X C; Zhao, S J; Ke, B C; Zhang, Y T; Ge, L; Qiao, X K] Zhengzhou University, Zhengzhou 450001, People's Republic of China
摘要:
The J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} processes and subsequent decays are studied using the world's largest J/ψ and ψ(3686) data samples collected with the BESIII detector. The parity-violating decay parameters of the decays Σ^{0}→Λγ and Σ[over ¯]^{0}→Λ[over ¯]γ, α_{Σ^{0}}=-0.0017±0.0021±0.0018 and α[over ¯]_{Σ^{0}}=0.0021±0.0020±0.0022, are measured for the first time. The strong CP symmetry is tested in the decays of the Σ^{0} hyperons for the first time by measuring the asymmetry A_{CP}^{Σ}=α_{Σ^{0}}+α[over ¯]_{Σ^{0}}=(0.4±2.9±1.3)×10^{-3}. The weak CP test is performed in the subsequent decays of their daughter particles Λ and Λ[over ¯]. Also for the first time, the transverse polarizations of the Σ^{0} hyperons in J/ψ and ψ(3686) decays are observed with opposite directions, and the ratios between the S-wave and D-wave contributions of the J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} decays are obtained. These results are crucial to understand the decay dynamics of the charmonium states and the production mechanism of the Σ^{0}-Σ[over ¯]^{0} pairs.
作者:
Ablikim, M.;Achasov, M. N.;Adlarson, P.;Afedulidis, O.;Ai, X. C.;...
期刊:
PHYSICAL REVIEW C,2024年110(1) ISSN:2469-9985
通讯作者:
Ablikim, M
作者机构:
[Yu, B. X.; Yu, G.; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Ma, M. M.; Chen, T.; Hou, X. T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Chen, Z. Y.; Rong, G.; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Wang, L. L.; Ouyang, Q.; Jiang, D.; Liao, Y. P.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Fang, S. S.; Chang, J. F.; Liu, Z. A.; Yang, T.; Yan, X. Q.; Sun, Z. Q.; Han, T. T.; Wu, J. F.; Sun, S. S.; Ding, B.; Fu, C. D.; Zhang, Y.; Lou, X. C.; Lin, T.; Zhang, B. X.; Xing, T. Y.; Cao, G. F.; Ji, W.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Fang, Y. Q.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, X. Y.; Li, L. K.; Li, H. B.; Liu, F.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Zhao, L.; Yin, J. H.; Yang, Y. F.; Batozskaya, V.; Song, W. M.; Chen, X. T.; Zhang, J. Z.; He, K. L.; Chen, G.; Ablikim, M.; Liu, C. X.; Li, X.; Zhu, K.; Liu, H. H.; Zhao, J. Z.; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Du, M. C.; Wang, Z.; Ablikim, M; Zhao, J. Y.; Dong, J.; Shi, J. Y.; Yuan, C. Z.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Xiang, B. H.; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Ma, X. T.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Zhang, Y. H.; Ma, R. Q.; Zheng, W. J.; Zou, J. H.; Liu, J. Y.; Wang, X. N.; Kui, X.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Li, Q. M.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Li, K.; Gong, W. X.; Xu, W.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Yang, Y. X.; Miao, H.; Zhang, S. H.; Li, F.; Lu, Z. H.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Zhang, Z. D.; Zhang, H. C.; Dai, H. L.; Li, W. D.; Fang, W. X.; Zeng, Y. J.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Xu, H. Y.; Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Afedulidis, O.; Fritsch, M.; Heinsius, F. H.; Kuessner, M.; Hanisch, F.; Wang, S.; Pelizaeus, M.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Wiedner, U.; Hoelzken, F.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Achasov, M. N.; Nikolaev, I. B.; Muchnoi, N. Yu.] SB RAS, Budker Inst Nucl Phys BINP, Novosibirsk 630090, Russia.;[Briere, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
通讯机构:
[Ablikim, M ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.
摘要:
Based on (2.712 +/- 0.014) x 10(9) psi(3686) events collected by the BESIII Collaboration, evidence of the hadronic decay h(c) -> (KSK+)-K-0 pi(-) + c.c. is found with a significance of 4.3 sigma in the psi(3686) -> pi(0)h(c) process. The branching fraction of h(c) -> (KSK+)-K-0 pi(-) + c.c. is measured to be (7.3 +/- 1.8 +/- 0.8) x 10(-4), where the first and second uncertainties are statistical and systematic, respectively. Combining with the exclusive decay width of eta(c) -> K (K) over bar pi, our result indicates inconsistencies with both pQCD and NRQCD predictions.
作者:
Ablikim, M.;Achasov, M. N.;Adlarson, P.;Afedulidis, O.;Ai, X. C.;...
期刊:
中国物理C,2024年48(8):083001 ISSN:1674-1137
通讯作者:
Ablikim, M
作者机构:
[Yu, B. X.; Yu, G.; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Ma, M. M.; Chen, T.; Hou, X. T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Chen, Z. Y.; Rong, G.; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Wang, L. L.; Ouyang, Q.; Jiang, D.; Liao, Y. P.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Fang, S. S.; Chang, J. F.; Liu, Z. A.; Yang, T.; Yan, X. Q.; Sun, Z. Q.; Han, T. T.; Wu, J. F.; Sun, S. S.; Ding, B.; Fu, C. D.; Zhang, Y.; Lou, X. C.; Lin, T.; Zhang, B. X.; Xing, T. Y.; Cao, G. F.; Ji, W.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Fang, Y. Q.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, X. Y.; Li, L. K.; Li, H. B.; Liu, F.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Zhao, L.; Yin, J. H.; Yang, Y. F.; Batozskaya, V.; Song, W. M.; Chen, X. T.; Zhang, J. Z.; He, K. L.; Chen, G.; Ablikim, M.; Liu, C. X.; Chang, W. L.; Li, X.; Zhu, K.; Liu, H. H.; Zhao, J. Z.; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Du, M. C.; Wang, Z.; Ablikim, M; Zhao, J. Y.; Dong, J.; Shi, J. Y.; Yuan, C. Z.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Xiang, B. H.; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Ma, X. T.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Zhang, Y. H.; Ma, R. Q.; Shi, R. S.; Zheng, W. J.; Zou, J. H.; Liu, J. Y.; Wang, X. N.; Kui, X.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Li, Q. M.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Li, K.; Gong, W. X.; Xu, W.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Wang, Meng; Yang, Y. X.; Miao, H.; Zhang, S. H.; Li, F.; Lu, Z. H.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Zhang, Z. D.; Zhang, H. C.; Dai, H. L.; Li, W. D.; Fang, W. X.; Zeng, Y. J.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.;[Xu, H. Y.; Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Afedulidis, O.; Fritsch, M.; Heinsius, F. H.; Kuessner, M.; Pelizaeus, M.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Wiedner, U.; Holzken, F.] Bochum Ruhr Univ, D-44780 Bochum, Germany.;[Achasov, M. N.; Nikolaev, I. B.; Muchnoi, N. Yu.] Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;[Briere, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
通讯机构:
[Ablikim, M ] C;Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
摘要:
<jats:title>Abstract</jats:title>
<jats:p>Using e<jats:sup>+</jats:sup>e<jats:sup>-</jats:sup> annihilation data corresponding to an integrated luminosity of 2.93 fb<jats:sup>-1</jats:sup> taken at the center-of-mass energy √s=3.773 GeV with the BESIII detector, a joint amplitude analysis is performed on the decays D<jats:sup>0</jats:sup>→π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup>π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup> and D<jats:sup>0</jats:sup>→π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup>π<jats:sup>0</jats:sup>π<jats:sup>0</jats:sup>(non-η). The fit fractions of individual components are obtained, and large interferences among the dominant components of the decays D<jats:sup>0</jats:sup>→a<jats:sub>1</jats:sub>(1260)π, D<jats:sup>0</jats:sup>→π(1300)π, D<jats:sup>0</jats:sup>→ρ(770)ρ(770) and D<jats:sup>0</jats:sup>→2(ππ)<jats:sub>S</jats:sub> are found in both channels. With the obtained amplitude model, the CP-even fractions of D<jats:sup>0</jats:sup>→π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup>π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup> and D<jats:sup>0</jats:sup>→π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup>π<jats:sup>0</jats:sup>π<jats:sup>0</jats:sup>(non-η) are determined to be (75.2 ± 1.1<jats:sub>stat.</jats:sub> ± 1.5<jats:sub>syst.</jats:sub>)% and (68.9 ± 1.5<jats:sub>stat.</jats:sub> ± 2.4<jats:sub>syst.</jats:sub>)%, respectively. The branching fractions of D<jats:sup>0</jats:sup>→π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup>π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup> and D<jats:sup>0</jats:sup>→π<jats:sup>+</jats:sup>π<jats:sup>-</jats:sup>π<jats:sup>0</jats:sup>π<jats:sup>0</jats:sup>(non-η) are measured to be (0.688 ± 0.010<jats:sub>stat.</jats:sub> ± 0.010<jats:sub>syst.</jats:sub>)% and (0.951 ± 0.025<jats:sub>stat.</jats:sub> ± 0.021<jats:sub>syst.</jats:sub>)%, respectively. The amplitude analysis provides an important model for binning strategy in the measurements of the strong phase parameters of D<jats:sup>0</jats:sup>→4π when used to determine the CKM angle γ(Φ<jats:sub>3</jats:sub>) via the B<jats:sup>-</jats:sup>→DK<jats:sup>-</jats:sup> decay. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.</jats:p>
作者:
Ablikim, M.;Achasov, M. N.;Adlarson, P.;Afedulidis, O.;Ai, X. C.;...
期刊:
Journal of High Energy Physics,2024年2024(4):1-17 ISSN:1029-8479
通讯作者:
Shen, HF
作者机构:
[Yu, B. X.; Yu, G.; Li, Xiaoyu; Hu, T.; Ning, Z.; Zhang, P.; Wen, S. P.; Shi, X.; Sun, G. X.; Ma, M. M.; Zhao, Ling; Chen, T.; Hou, X. T.; Zhu, Z. A.; Xu, G. F.; Wang, K.; Zhou, L. P.; Heng, Y. K.; Ji, Q.; Zhang, J. W.; Chen, Z. Y.; Rong, G.; Guan, C. Y.; Qi, F. Z.; Wang, Y. F.; Wang, L. L.; Ouyang, Q.; Jiang, D.; Zhang, A. Q.; Ji, X. B.; Qian, S.; Dong, M. Y.; Fang, S. S.; Chang, J. F.; Liu, Z. A.; Yan, X. Q.; Sun, Z. Q.; Han, T. T.; Wu, J. F.; Sun, S. S.; Ding, B.; Fu, C. D.; Lou, X. C.; Lin, T.; Zhang, B. X.; Xing, T. Y.; Cao, G. F.; Ji, W.; Wu, L. H.; Zhao, Y. B.; Fu, Y. W.; Zheng, J. P.; Jiang, X. S.; Kiuchi, R.; Fang, Y. Q.; Gu, M. H.; Lu, Y. P.; Dong, L. Y.; Zhang, H. Q.; Zhao, G.; Wu, L. J.; Li, L. J.; Yang, Yifan; Yuan, Y.; Lu, X. L.; Wu, Z.; Fang, Y.; Luo, X. L.; Ji, X. L.; Zhang, X. M.; Li, L. K.; Li, H. B.; Liang, H.; Huang, Y. P.; Zhang, J. Y.; Yin, J. H.; Batozskaya, V.; Liu, Huanhuan; Song, W. M.; Chen, X. T.; Zhang, J. Z.; He, K. L.; Chen, G.; Ablikim, M.; Liu, C. X.; Li, X.; Zhu, K.; Zhao, J. Z.; Yang, Tao; Mao, Z. P.; Xiao, S. Y.; Lu, J. G.; Liu, P. L.; Jing, M. Q.; Sun, H. K.; Chen, Y. B.; Zhang, Shuihan; Du, M. C.; Wang, Z.; Liu, Fang; Zhao, J. Y.; Dong, J.; Shi, J. Y.; Yuan, C. Z.; Tang, G. Y.; Yuan, S. C.; Zhang, H. Y.; Chen, M. L.; Zhang, Z. H.; Hou, G. Y.; Shen, H. F.; Shao, L. G.; Hou, Z. L.; Sun, Y. Z.; Liu, B. J.; Li, Ke; Xiang, B. H.; Zhu, K. J.; Liu, H. M.; Xu, C. F.; Ma, H. L.; Ye, M.; Xie, Y. G.; Chen, H. S.; Cao, N.; Ma, X. T.; Deng, Z. Y.; Ma, Q. M.; Wang, Z. Y.; Cai, X.; Zhang, Y. H.; Ma, R. Q.; Zheng, W. J.; Zou, J. H.; Zhang, Yao; Liu, J. Y.; Wang, X. N.; Kui, X.; Li, W. G.; Wang, Y. Q.; Mo, X. H.; Fang, J.; Li, Q. M.; Shen, X. Y.; Ma, X. Y.; Hu, H. M.; Gong, W. X.; Xu, W.; Hu, Y.; Wang, B.; Zhang, B. L.; Ma, J. L.; Wang, Meng; Yang, Y. X.; Miao, H.; Li, F.; Lu, Z. H.; Yang, H. X.; Qin, Z. H.; Li, G.; Ping, R. G.; Qiu, J. F.; Zhang, Z. D.; Zhang, H. C.; Dai, H. L.; Li, W. D.; Fang, W. X.] Inst High Energy Phys, Beijing 100049, Peoples R China.;[Yuan, L.] Beihang Univ, Beijing 100191, Peoples R China.;[Afedulidis, O.; Fritsch, M.; Heinsius, F. H.; Kuessner, M.; Pelizaeus, M.; Kopf, B.; Wollenberg, L.; Holtmann, T.; de Boer, R. E.; Feldbauer, F.; Wiedner, U.; Hoelzken, F.] Ruhr Univ Bochum, ICAMS, D-44780 Bochum, Germany.;[Achasov, M. N.; Nikolaev, I. B.; Muchnoi, N. Yu.] SB RAS, BINP, Novosibirsk 630090, Russia.;[Briere, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
通讯机构:
[Shen, HF ] I;Inst High Energy Phys, Beijing 100049, Peoples R China.;China Ctr Adv Sci & Technol, POB 8730, Beijing 100190, Peoples R China.
摘要:
<jats:title>A<jats:sc>bstract</jats:sc>
</jats:title><jats:p>Using (27<jats:italic>.</jats:italic>12 <jats:italic>±</jats:italic> 0<jats:italic>.</jats:italic>14) <jats:italic>×</jats:italic> 10<jats:sup>8</jats:sup><jats:italic>ψ</jats:italic>(3686) events collected with the BESIII detector at BEPCII, the decay of <jats:italic>ψ</jats:italic>(3686) <jats:italic>→</jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$$ {\varOmega}^{-}{K}^{+}{\overline{\Xi}}^0 $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>Ω</mml:mi>
<mml:mo>−</mml:mo>
</mml:msup>
<mml:msup>
<mml:mi>K</mml:mi>
<mml:mo>+</mml:mo>
</mml:msup>
<mml:msup>
<mml:mover>
<mml:mi>Ξ</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mn>0</mml:mn>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> + c<jats:italic>.</jats:italic>c<jats:italic>.</jats:italic> is observed for the first time. The branching fraction of this decay is measured to be <jats:inline-formula><jats:alternatives><jats:tex-math>$$ {\mathcal{B}}_{\psi (3686)\to {\varOmega}^{-}{K}^{+}{\overline{\Xi}}^0+\textrm{c}.\textrm{c}.} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mrow>
<mml:mi>ψ</mml:mi>
<mml:mfenced>
<mml:mn>3686</mml:mn>
</mml:mfenced>
<mml:mo>→</mml:mo>
<mml:msup>
<mml:mi>Ω</mml:mi>
<mml:mo>−</mml:mo>
</mml:msup>
<mml:msup>
<mml:mi>K</mml:mi>
<mml:mo>+</mml:mo>
</mml:msup>
<mml:msup>
<mml:mover>
<mml:mi>Ξ</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mn>0</mml:mn>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:mi>c</mml:mi>
<mml:mo>.</mml:mo>
<mml:mi>c</mml:mi>
<mml:mo>.</mml:mo>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> = (2<jats:italic>.</jats:italic>78 ± 0<jats:italic>.</jats:italic>40 ± 0<jats:italic>.</jats:italic>18) × 10<jats:sup><jats:italic>−</jats:italic>6</jats:sup>, where the first uncertainty is statistical and the second is systematic. Possible baryon excited states are searched for in this decay, but no evident intermediate state is observed with the current sample size.</jats:p>