The design of complex reactor shielding structures requires consideration of neutron and photon radiation levels in various regions, as well as trade-offs in weight, volume, and cost, leading to a substantial increase in shielding calculation parameters and optimization objectives. This study introduces a high-dimensional multi-objective shielding optimization method based on a multi-parameter shielding calculation surrogate model, with significant improvements to the FCNN-NSGAIII shielding optimization method which integrates a neural network with a genetic algorithm. For the optimization of ...