版权说明 操作指南
首页 > 成果 > 详情

A Particle Swarm Optimization-Based Ensemble Broad Learning System for Intelligent Fault Diagnosis in Safety-Critical Energy Systems with High-Dimensional Small Samples

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yan, Jiasheng;Sui, Yang;Dai, Tao
通讯作者:
Sui, Y
作者机构:
[Sui, Yang; Dai, Tao; Sui, Y; Yan, Jiasheng] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
[Sui, Yang; Dai, Tao; Sui, Y; Yan, Jiasheng] Univ South China, Key Lab Adv Nucl Energy Design & Safety, Minist Educ, Hengyang 421001, Peoples R China.
通讯机构:
[Sui, Y ] U
Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
Univ South China, Key Lab Adv Nucl Energy Design & Safety, Minist Educ, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
safety-critical energy systems;intelligent fault diagnosis;ensemble broad learning system;random forest;particle swarm optimization
期刊:
Mathematics
ISSN:
2227-7390
年:
2025
卷:
13
期:
5
基金类别:
National Natural Science Foundation of China; Natural Science Foundation of Hunan Province, China [2023JJ10035]; [52174189]
机构署名:
本校为第一且通讯机构
院系归属:
核科学技术学院
摘要:
Intelligent fault diagnosis (IFD) plays a crucial role in reducing maintenance costs and enhancing the reliability of safety-critical energy systems (SCESs). In recent years, deep learning-based IFD methods have achieved high fault diagnosis accuracy extracting implicit higher-order correlations between features. However, the excessive long training time of deep learning models conflicts with the requirements of real-time analysis for IFD, hindering their further application in practical industrial environments. To address the aforementioned challenge, this paper proposes an innovative IFD met...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com