摘要:
This study is to distinguish peripheral lung cancer and pulmonary inflammatory pseudotumor using CT-radiomics features extracted from PET/CT images. In this study, the standard 18F-fluorodeoxyglucose positron emission tomography/ computed tomography (18 F-FDG PET/CT) images of 21 patients with pulmonary inflammatory pseudotumor (PIPT) and 21 patients with peripheral lung cancer were retrospectively collected. The dataset was used to extract CT-radiomics features from regions of interest (ROI), The intra-class correlation coefficient (ICC) was used to screen the robust feature from all the radiomic features. Using, then, statistical methods to screen CT-radiomics features, which could distinguish peripheral lung cancer and PIPT. And the ability of radiomics features distinguished peripheral lung cancer and PIPT was estimated by receiver operating characteristic (ROC) curve and compared by the Delong test. A total of 435 radiomics features were extracted, of which 361 features showed relatively good repeatability (ICC ≥ 0.6). 20 features showed the ability to distinguish peripheral lung cancer from PIPT. these features were seen in 14 of 330 Gray-Level Co-occurrence Matrix features, 1 of 49 Intensity Histogram features, 5 of 18 Shape features. The area under the curves (AUC) of these features were 0.731 ± 0.075, 0.717, 0.748 ± 0.038, respectively. The P values of statistical differences among ROC were 0.0499 (F9, F20), 0.0472 (F10, F11) and 0.0145 (F11, Mean4). The discrimination ability of forming new features (Parent Features) after averaging the features extracted at different angles and distances was moderate compared to the previous features (Child features). Radiomics features extracted from non-contrast CT based on PET/CT images can help distinguish peripheral lung cancer and PIPT.
作者机构:
[张振华] Department of Nuclear Physics, School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China;[Qiu Q.-T.; 陈进琥; 马长升; 段敬豪] Department of Radiation Physics Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China;[刘陈路] Department of Nuclear Physics, School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China, Department of Radiation Physics Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
通讯机构:
[Zhang, Z.-H.] D;Department of Nuclear Physics, China
作者:
Zhang, Z. H.;Zhang, Y. F.;Hu, C. Y.;Feng, S.;Zhu, J. J.;...
期刊:
Journal of Instrumentation,2020年15(4):P04008-P04008 ISSN:1748-0221
通讯作者:
Liao, B.
作者机构:
[Zhou, Q.; Liao, B.; Wang, H. R.; Zhang, Z. H.] Beijing Normal Univ, Coll Nucl Sci & Technol, Minist Educ, Key Lab Beam Technol, Beijing 100875, Peoples R China.;[Hu, C. Y.; Liu, D. K.; Zhu, J. J.; Zhang, Z. H.; Feng, S.] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Zhang, Y. F.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.;[Liao, B.; Zhang, Z. H.] Beijing Radiat Ctr, Beijing 100875, Peoples R China.;[Liu, D. K.] Xian Nucl Instrument Factory, Xian 710061, Peoples R China.
通讯机构:
[Liao, B.] B;Beijing Normal Univ, Coll Nucl Sci & Technol, Minist Educ, Key Lab Beam Technol, Beijing 100875, Peoples R China.;Beijing Radiat Ctr, Beijing 100875, Peoples R China.
关键词:
Digital signal processing (DSP);Ion identification systems;Particle identification methods;Radiation monitoring
作者机构:
[Qi, Jing-Juan; Guo, Xin-Heng] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.;[Wang, Zhen-Yang] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China.;[Zhang, Zhen-Hua] Univ South China, Sch Nucl & Technol, Hengyang 421001, Hunan, Peoples R China.;[Wang, Chao] Northwestern Polytech Univ, Ctr Ecol & Environm Sci, Key Lab Space Biosci & Biotechnol, Xian 710072, Peoples R China.
通讯机构:
[Guo, Xin-Heng] B;[Zhang, Zhen-Hua] U;Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.;Univ South China, Sch Nucl & Technol, Hengyang 421001, Hunan, Peoples R China.
摘要:
In this work, we study the localized CP violation in B−→K−π+π− and B−→K−σ(600) decays by employing the quasi-two-body QCD factorization approach. Both the resonance and the nonresonance contributions are studied for the B−→K−π+π− decay. The resonance contributions include those not only from [ππ] channels including σ(600), ρ0(770) and ω(782) but also from [Kπ] channels including K0*(700)(κ), K*(892), K0*(1430), K*(1410), K*(1680) and K2*(1430). By fitting the four experimental data ACP(K−π+π−)=0.678±0.078±0.0323±0.007 for mK−π+2<15 GeV2 and 0.08<mπ+π−2<0.66 GeV2, ACP(B−→K0*(1430)π−)=0.061±0.032, B(B−→K0*(1430)π−)=(39−5+6)×10−6 and B(B−→σ(600)π−→π−π+π−)<4.1×10−6, we get the end-point divergence parameters in our model, ϕS∈[1.77,2.25] and ρS∈[2.39,4.02]. Using these results for ρS and ϕS, we predict that the CP asymmetry parameter ACP∈[−0.34,−0.11] and the branching fraction B∈[6.53,17.52]×10−6 for the B−→K−σ(600) decay. In addition, we also analyze contributions to the localized CP asymmetry ACP(B−→K−π+π−) from [ππ], [Kπ] channel resonances and nonresonance individually, which are found to be ACP(B−→K−[π+π−]→K−π+π−)=0.509±0.042, ACP(B−→[K−π+]π→K−π+π−)=0.174±0.025 and ACPNR(B−→K−π+π−)=0.061±0.0042, respectively. Comparing these results, we can see that the localized CP asymmetry in the B−→K−π+π− decay is mainly induced by the [ππ] channel resonances while contributions from the [Kπ] channel resonances and nonresonance are both very small.
期刊:
EUROPEAN PHYSICAL JOURNAL C,2018年78(10):1-8 ISSN:1434-6044
通讯作者:
Qi, Jing-Juan
作者机构:
[Qi, Jing-Juan; Guo, Xin-Heng] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.;[Wang, Zhen-Yang] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China.;[Zhang, Zhen-Hua] Univ South China, Sch Nucl & Technol, Hengyang 421001, Hunan, Peoples R China.;[Xu, Jing] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China.
通讯机构:
[Qi, Jing-Juan] B;Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.
摘要:
Within the QCD factorization approach, we study the CP violations in
$$B^-\rightarrow K^-\pi ^+\pi ^-$$
and
$$B^-\rightarrow K^- f_0(500)$$
decays. We find the experimental data of the localized CP asymmetry in
$$B^-\rightarrow K^-\pi ^+\pi ^-$$
decays in the region
$$m_{K^-\pi ^+}^2<15$$
$$\mathrm {GeV}^2$$
and
$$0.08<m_{\pi ^+\pi ^-}^2<0.66$$
$$\mathrm {GeV}^2$$
can be explained by the interference of two intermediate resonances,
$$\rho ^0(770)$$
and
$$f_0(500)$$
when the parameters in our interference model are in the allowed ranges, i.e. the relative strong phase
$$\delta \in [2.124, 5.976]$$
and the end-point divergence parameters
$$\rho _S\in [5.692, 8]$$
and
$$\phi _S \in [0, 2\pi ]$$
. With the obtained allowed ranges for
$$\rho _S$$
and
$$\phi _S$$
, we obtain the predictions for the CP asymmetry parameter
$$A_{CP} \in [-0.115, -0.151]$$
and the branching fraction
$${\mathcal {B}} \in [3.763, 20.014]\times 10^{-5}$$
for
$$B^-\rightarrow K^-f_0(500)$$
decay modes.
期刊:
Advances in High Energy Physics,2018年2018(Pt.2):1-11 ISSN:1687-7357
通讯作者:
Zheng, Bo;Zhang, Zhen-Hua
作者机构:
[Zheng, Bo; Zheng, B; Zhang, Zhen-Hua; Zhou, Hang] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.;[Zheng, Bo] Helmholtz Inst Mainz, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany.
通讯机构:
[Zheng, B; Zhang, ZH] U;[Zheng, Bo] H;Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.;Helmholtz Inst Mainz, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany.
摘要:
<jats:p>We study the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> violation induced by the interference between two intermediate resonances <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup></mml:math> in the phase space of singly-Cabibbo-suppressed decay <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup></mml:math>. We adopt the factorization-assisted topological approach in dealing with the decay amplitudes of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>∓</mml:mo></mml:mrow></mml:msup></mml:math>. The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetries of two-body decays are predicted to be very tiny, which are <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mo stretchy="false">(</mml:mo><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1.27</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.25</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">5</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">3.86</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.26</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">5</mml:mn></mml:mrow></mml:msup></mml:math>, respectively, for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math>, while the differential <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetry of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup></mml:math> is enhanced because of the interference between the two intermediate resonances, which can reach as large as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mn mathvariant="normal">3</mml:mn><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">4</mml:mn></mml:mrow></mml:msup></mml:math>. For some NPs which have considerable impacts on the chromomagnetic dipole operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M16"><mml:mrow><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">8</mml:mn><mml:mi>g</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, the global <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M17"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetries of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M18"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M19"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> can be then increased to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M20"><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">0.56</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.08</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M21"><mml:mo stretchy="false">(</mml:mo><mml:mo>-</mml:mo><mml:mn mathvariant="normal">0.50</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.04</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msup></mml:math>, respectively. The regional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M22"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetry in the overlapped region of the phase space can be as large as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M23"><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">1.3</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.3</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msup></mml:math>.</jats:p>
通讯机构:
School of Nuclear Science and Technology, University of South China, Hengyang, China
关键词:
温室大棚;固体径迹蚀刻法;放射性水平;氡浓度
摘要:
本项目使用固体径迹蚀刻法、BH1936低本底多道γ能谱仪对河北省沧州市南皮县某村庄两个传统的蔬菜温室大棚和南华大学某现代化玻璃大棚内的放射性水平进行测量。结果显示,三个大棚平均氡浓度分别为136、89、8.8 Bq/m^3。前两个大棚土壤中^40K、^232Th、^226Ra三种放射性核素的比活度较为正常,但空气中氡浓度偏高。作业人员年均有效剂量分别为1.27、1.13、0.94 m Sv/a。有效通风可以显著降低大棚中氡浓度,保障作业人员的身体健康。