作者机构:
[Zhao, YJ; Zhang, Zhen-Hua; Zhao, Yu-Jie] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.;[Guo, Xin-Heng] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.
通讯机构:
[Zhao, YJ ] U;Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.
摘要:
CP violation in baryon decay processes is still undiscovered to date. We present a general analysis of the decay-angular distributions and the corresponding CP asymmetries in cascade decays of the type H-* R (-* ab)c, ) c, where H is a heavy hadron that decays through weak interactions H-* Rc and the resonance R decays strongly via R-* ab. Based on the analysis, we propose to search for CP violation in the decay-angular distributions in the cascade decay processes-* B M, with B or M subsequently decaying through strong interactions, where is the mother baryon, B and M are the daughter baryon and meson, respectively, and M has to be spin nonzero. We also present some typical decay channels in which the search for such kinds of CP asymmetries can be performed.
作者机构:
[Zhang, Zhen-Hua] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.
通讯机构:
[Zhang, ZH ] U;Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.
摘要:
In this paper, some subtleties in the measurement of the transverse polarization of the produced hadrons on symmetric colliders-such as the Large Hadron Collider when conducting the pp collisions-are revealed. It can be proved that the transverse polarization of the produced particles with opposite pseudorapidity takes exactly opposite values if the normal vector of the production plane is defined in a convention-dependent way, regardless of whether parity is conserved or not in the production process. The analysis shows that, due to the symmetry of the initial state, the Ab transverse polarization measured by the CMS Collaboration in Phys. Rev. D 97, 072010 (2018) should be exactly equal to zero. A modified measurement of the Ab polarization for CMS and ATLAS is proposed, the result of which can be compared to the LHCb measurement.
作者机构:
[Zhang, Zhen-Hua] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.
摘要:
We propose to search for CP violation through the twofold angular distributions in the four-body decays of bottom and charmed hadrons. The two polar angles in the twofold angular distributions are correlated, to which the interferences of intermediate resonances are one important origin. These interferences will leave tracks in the twofold angular distributions, with which the CP violation can be studied. Special attention is paid to the case when all the intermediate resonances are different, which is unique to four-body decays. It is suggested to look for CP violation in four-body decays such as ?0b -> pK-K thorn K- through the analysis of the twofold angular distributions. The method proposed in this paper is also widely applicable to other four-body decays processes.
通讯机构:
[Zhen-Hua Zhang] S;School of Nuclear Science and Technology, University of South China, Hengyang, China
摘要:
<jats:title>Abstract</jats:title><jats:p>We introduce a set of observables representing angular distribution asymmetries, which can be viewed as a generalization of the forward-backward asymmetry of angular distributions, and can be used as an effective tool to search for <jats:inline-formula><jats:alternatives><jats:tex-math>$$C\!P$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>C</mml:mi>
<mml:mspace />
<mml:mi>P</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> violation in three-body decays of bottom and charmed baryons. We propose to search for such <jats:inline-formula><jats:alternatives><jats:tex-math>$$C\!P$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>C</mml:mi>
<mml:mspace />
<mml:mi>P</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> asymmetries (1) in decays with <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda ^0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>Λ</mml:mi>
<mml:mn>0</mml:mn>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Sigma ^\pm $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>Σ</mml:mi>
<mml:mo>±</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>, or <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda _c^+$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>Λ</mml:mi>
<mml:mi>c</mml:mi>
<mml:mo>+</mml:mo>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula> involved, such as <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda _b\rightarrow \Lambda ^0 D$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>Λ</mml:mi>
<mml:mi>b</mml:mi>
</mml:msub>
<mml:mo>→</mml:mo>
<mml:msup>
<mml:mi>Λ</mml:mi>
<mml:mn>0</mml:mn>
</mml:msup>
<mml:mi>D</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda _b\rightarrow \Lambda ^0\rho (770)^0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>Λ</mml:mi>
<mml:mi>b</mml:mi>
</mml:msub>
<mml:mo>→</mml:mo>
<mml:msup>
<mml:mi>Λ</mml:mi>
<mml:mn>0</mml:mn>
</mml:msup>
<mml:mi>ρ</mml:mi>
<mml:msup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mn>770</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mn>0</mml:mn>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>; and (2) in three-body decays of bottom baryons with opposite parity intermediate resonances involved. Typical examples include <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Xi _b^-\rightarrow p K^- K^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msubsup>
<mml:mi>Ξ</mml:mi>
<mml:mi>b</mml:mi>
<mml:mo>-</mml:mo>
</mml:msubsup>
<mml:mo>→</mml:mo>
<mml:mi>p</mml:mi>
<mml:msup>
<mml:mi>K</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
<mml:msup>
<mml:mi>K</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda _b^0\rightarrow p K_S\pi ^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msubsup>
<mml:mi>Λ</mml:mi>
<mml:mi>b</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
<mml:mo>→</mml:mo>
<mml:mi>p</mml:mi>
<mml:msub>
<mml:mi>K</mml:mi>
<mml:mi>S</mml:mi>
</mml:msub>
<mml:msup>
<mml:mi>π</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda _b^0\rightarrow p \pi ^0\pi ^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msubsup>
<mml:mi>Λ</mml:mi>
<mml:mi>b</mml:mi>
<mml:mn>0</mml:mn>
</mml:msubsup>
<mml:mo>→</mml:mo>
<mml:mi>p</mml:mi>
<mml:msup>
<mml:mi>π</mml:mi>
<mml:mn>0</mml:mn>
</mml:msup>
<mml:msup>
<mml:mi>π</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, in which the last decay channel is used as a toy model to illustrate the basic idea.
</jats:p>
作者机构:
[Hu, Rui; Zhang, Zhen-Hua] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.
摘要:
An analysis of the forward-backward asymmetry (FBA) in the decay B-+/- -> (KKK +/-)-K-+/--K--/+ is carried out based on the LHCb data. It is found that the large FBA observed for the invariant mass of the K+ K- pair around 1.5 GeV can be explained by the interference of the amplitudes between the resonances with even and odd spins, where the former can be the spin-0 f(0)(1500) resonance plus a nonresonance s wave, while the latter is a spin-1 resonance which is probably rho(0)(1450). This is in contradiction with the conclusion of former experimental analysis [e.g., BABAR, Phys. Rev. D 85, 112010 (2012)], according to which the analysis showed no signal of spin-odd resonances at all when the invariant mass of the K+ K- pair was around 1.5 GeV. According to the analysis of the current paper the existence of the spin-odd resonances such as rho(0)(1450) is inevitable for the explanation of the large FBA in this region. The analysis also shows that the CP asymmetry of the decay channel B-+/- -> rho(0)(1450)K-+/- is about (-3.4 +/- 3.0)%. We suggest our experimental colleagues perform a closer analysis of this channel. We also suggest to perform the measurements of the FBAs (as well as the forward-backward CP asymmetry) in other three body decay channels of beauty and charmed mesons, as this is helpful for resonance analysis.
作者机构:
[Zhang, Zhen-Hua; Wei, Ya-Rui] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.
摘要:
CP violation of the decay B-+/- -> pi(+/-)pi(+)pi(-) in the f(0)(500) - rho(770)(0) interfering region is analyzed. The forward-backward asymmetries (FBAs) and the corresponding CP asymmetries FB-CPAs are particularly investigated. To isolate the CPV caused by the interference of different partial wave more cleanly, we also introduce the direct-CPV-subtracted FB-CPA. Based on the LHCb data, we extract the FBAs, FB-CPAs, direct-CPV-subtracted FB-CPA, as well as the regional CPAs with invariant mass of the pair in the range 0.2 GeV/c(2) < root s(low) < 1.8 GeV/c(2). It is found that the (direct-CPV-subtracted) FB-CPAs are quite large in the f(0) (500) - rho(770)(0) interfering region, which confirms that the interference of the intermediate resonances f(0) (500) and rho(770)(0) plays an important role for the CP violation of the three-body decay channel B-+/- -> pi(+/-)pi(+)pi(-).
摘要:
A novel observable measuring the CP asymmetry in multi-body decays of heavy mesons, which is called the forward-backward asymmetry induced CP asymmetry (FBI-CPA), A(CP)(FB), is introduced. This observable has the dual advantages that 1) it can isolate the CP asymmetry associated with the interference of the S- and P-wave amplitude from that associated with the S- or P-wave amplitude alone; 2) it can effectively almost double the statistics comparing to the conventionally defined regional CP asymmetry. We also suggest to perform the measurements of FBI-CPA in some three-body decay channels of charm and beauty mesons. (C) 2021 Published by Elsevier B.V.
摘要:
This study is to distinguish peripheral lung cancer and pulmonary inflammatory pseudotumor using CT-radiomics features extracted from PET/CT images. In this study, the standard 18F-fluorodeoxyglucose positron emission tomography/ computed tomography (18 F-FDG PET/CT) images of 21 patients with pulmonary inflammatory pseudotumor (PIPT) and 21 patients with peripheral lung cancer were retrospectively collected. The dataset was used to extract CT-radiomics features from regions of interest (ROI), The intra-class correlation coefficient (ICC) was used to screen the robust feature from all the radiomic features. Using, then, statistical methods to screen CT-radiomics features, which could distinguish peripheral lung cancer and PIPT. And the ability of radiomics features distinguished peripheral lung cancer and PIPT was estimated by receiver operating characteristic (ROC) curve and compared by the Delong test. A total of 435 radiomics features were extracted, of which 361 features showed relatively good repeatability (ICC ≥ 0.6). 20 features showed the ability to distinguish peripheral lung cancer from PIPT. these features were seen in 14 of 330 Gray-Level Co-occurrence Matrix features, 1 of 49 Intensity Histogram features, 5 of 18 Shape features. The area under the curves (AUC) of these features were 0.731 ± 0.075, 0.717, 0.748 ± 0.038, respectively. The P values of statistical differences among ROC were 0.0499 (F9, F20), 0.0472 (F10, F11) and 0.0145 (F11, Mean4). The discrimination ability of forming new features (Parent Features) after averaging the features extracted at different angles and distances was moderate compared to the previous features (Child features). Radiomics features extracted from non-contrast CT based on PET/CT images can help distinguish peripheral lung cancer and PIPT.
作者机构:
[张振华] Department of Nuclear Physics, School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China;[Qiu Q.-T.; 陈进琥; 马长升; 段敬豪] Department of Radiation Physics Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China;[刘陈路] Department of Nuclear Physics, School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China, Department of Radiation Physics Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
通讯机构:
[Zhang, Z.-H.] D;Department of Nuclear Physics, China
作者:
Zhang, Z. H.;Zhang, Y. F.;Hu, C. Y.;Feng, S.;Zhu, J. J.;...
期刊:
Journal of Instrumentation,2020年15(4):P04008-P04008 ISSN:1748-0221
通讯作者:
Liao, B.
作者机构:
[Zhou, Q.; Liao, B.; Wang, H. R.; Zhang, Z. H.] Beijing Normal Univ, Coll Nucl Sci & Technol, Minist Educ, Key Lab Beam Technol, Beijing 100875, Peoples R China.;[Hu, C. Y.; Liu, D. K.; Zhu, J. J.; Zhang, Z. H.; Feng, S.] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Zhang, Y. F.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.;[Liao, B.; Zhang, Z. H.] Beijing Radiat Ctr, Beijing 100875, Peoples R China.;[Liu, D. K.] Xian Nucl Instrument Factory, Xian 710061, Peoples R China.
通讯机构:
[Liao, B.] B;Beijing Normal Univ, Coll Nucl Sci & Technol, Minist Educ, Key Lab Beam Technol, Beijing 100875, Peoples R China.;Beijing Radiat Ctr, Beijing 100875, Peoples R China.
关键词:
Digital signal processing (DSP);Ion identification systems;Particle identification methods;Radiation monitoring
作者机构:
[Qi, Jing-Juan; Guo, Xin-Heng] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.;[Wang, Zhen-Yang] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China.;[Zhang, Zhen-Hua] Univ South China, Sch Nucl & Technol, Hengyang 421001, Hunan, Peoples R China.;[Wang, Chao] Northwestern Polytech Univ, Ctr Ecol & Environm Sci, Key Lab Space Biosci & Biotechnol, Xian 710072, Peoples R China.
通讯机构:
[Guo, Xin-Heng] B;[Zhang, Zhen-Hua] U;Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.;Univ South China, Sch Nucl & Technol, Hengyang 421001, Hunan, Peoples R China.
摘要:
In this work, we study the localized CP violation in B−→K−π+π− and B−→K−σ(600) decays by employing the quasi-two-body QCD factorization approach. Both the resonance and the nonresonance contributions are studied for the B−→K−π+π− decay. The resonance contributions include those not only from [ππ] channels including σ(600), ρ0(770) and ω(782) but also from [Kπ] channels including K0*(700)(κ), K*(892), K0*(1430), K*(1410), K*(1680) and K2*(1430). By fitting the four experimental data ACP(K−π+π−)=0.678±0.078±0.0323±0.007 for mK−π+2<15 GeV2 and 0.08<mπ+π−2<0.66 GeV2, ACP(B−→K0*(1430)π−)=0.061±0.032, B(B−→K0*(1430)π−)=(39−5+6)×10−6 and B(B−→σ(600)π−→π−π+π−)<4.1×10−6, we get the end-point divergence parameters in our model, ϕS∈[1.77,2.25] and ρS∈[2.39,4.02]. Using these results for ρS and ϕS, we predict that the CP asymmetry parameter ACP∈[−0.34,−0.11] and the branching fraction B∈[6.53,17.52]×10−6 for the B−→K−σ(600) decay. In addition, we also analyze contributions to the localized CP asymmetry ACP(B−→K−π+π−) from [ππ], [Kπ] channel resonances and nonresonance individually, which are found to be ACP(B−→K−[π+π−]→K−π+π−)=0.509±0.042, ACP(B−→[K−π+]π→K−π+π−)=0.174±0.025 and ACPNR(B−→K−π+π−)=0.061±0.0042, respectively. Comparing these results, we can see that the localized CP asymmetry in the B−→K−π+π− decay is mainly induced by the [ππ] channel resonances while contributions from the [Kπ] channel resonances and nonresonance are both very small.
期刊:
Advances in High Energy Physics,2018年2018(Pt.2):1-11 ISSN:1687-7357
通讯作者:
Zheng, Bo;Zhang, Zhen-Hua
作者机构:
[Zheng, Bo; Zheng, B; Zhang, Zhen-Hua; Zhou, Hang] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.;[Zheng, Bo] Helmholtz Inst Mainz, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany.
通讯机构:
[Zheng, B; Zhang, ZH] U;[Zheng, Bo] H;Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China.;Helmholtz Inst Mainz, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany.
摘要:
<jats:p>We study the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> violation induced by the interference between two intermediate resonances <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup></mml:math> in the phase space of singly-Cabibbo-suppressed decay <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup></mml:math>. We adopt the factorization-assisted topological approach in dealing with the decay amplitudes of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>∓</mml:mo></mml:mrow></mml:msup></mml:math>. The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetries of two-body decays are predicted to be very tiny, which are <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mo stretchy="false">(</mml:mo><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1.27</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.25</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">5</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">3.86</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.26</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">5</mml:mn></mml:mrow></mml:msup></mml:math>, respectively, for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math>, while the differential <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetry of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup></mml:math> is enhanced because of the interference between the two intermediate resonances, which can reach as large as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mn mathvariant="normal">3</mml:mn><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">4</mml:mn></mml:mrow></mml:msup></mml:math>. For some NPs which have considerable impacts on the chromomagnetic dipole operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M16"><mml:mrow><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">8</mml:mn><mml:mi>g</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, the global <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M17"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetries of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M18"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M19"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">892</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> can be then increased to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M20"><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">0.56</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.08</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M21"><mml:mo stretchy="false">(</mml:mo><mml:mo>-</mml:mo><mml:mn mathvariant="normal">0.50</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.04</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msup></mml:math>, respectively. The regional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M22"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> asymmetry in the overlapped region of the phase space can be as large as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M23"><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">1.3</mml:mn><mml:mo>±</mml:mo><mml:mn mathvariant="normal">0.3</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:msup><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msup></mml:math>.</jats:p>
期刊:
EUROPEAN PHYSICAL JOURNAL C,2018年78(10):1-8 ISSN:1434-6044
通讯作者:
Qi, Jing-Juan
作者机构:
[Qi, Jing-Juan; Guo, Xin-Heng] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.;[Wang, Zhen-Yang] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China.;[Zhang, Zhen-Hua] Univ South China, Sch Nucl & Technol, Hengyang 421001, Hunan, Peoples R China.;[Xu, Jing] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China.
通讯机构:
[Qi, Jing-Juan] B;Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China.
摘要:
Within the QCD factorization approach, we study the CP violations in
$$B^-\rightarrow K^-\pi ^+\pi ^-$$
and
$$B^-\rightarrow K^- f_0(500)$$
decays. We find the experimental data of the localized CP asymmetry in
$$B^-\rightarrow K^-\pi ^+\pi ^-$$
decays in the region
$$m_{K^-\pi ^+}^2<15$$
$$\mathrm {GeV}^2$$
and
$$0.08<m_{\pi ^+\pi ^-}^2<0.66$$
$$\mathrm {GeV}^2$$
can be explained by the interference of two intermediate resonances,
$$\rho ^0(770)$$
and
$$f_0(500)$$
when the parameters in our interference model are in the allowed ranges, i.e. the relative strong phase
$$\delta \in [2.124, 5.976]$$
and the end-point divergence parameters
$$\rho _S\in [5.692, 8]$$
and
$$\phi _S \in [0, 2\pi ]$$
. With the obtained allowed ranges for
$$\rho _S$$
and
$$\phi _S$$
, we obtain the predictions for the CP asymmetry parameter
$$A_{CP} \in [-0.115, -0.151]$$
and the branching fraction
$${\mathcal {B}} \in [3.763, 20.014]\times 10^{-5}$$
for
$$B^-\rightarrow K^-f_0(500)$$
decay modes.