作者机构:
[Li, Xiao-Hua; Pan, Xiao; Liu, Hong-Ming; Zou, You-Tian; Chen, Jiu-Long] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[He, Biao] Cent South Univ, Coll Phys & Elect, Changsha 410083, Peoples R China.;[Li, Xiao-Hua] Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Peoples R China.
通讯机构:
[Li, Xiao-Hua] U;[Li, Xiao-Hua] H;Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.;Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Peoples R China.
关键词:
two-proton radioactivity;Geiger-Nuttall law;empirical formula
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In the present work, a two-parameter empirical formula is proposed, based on the Geiger-Nuttall law, to study two-proton (
<jats:inline-formula>
<jats:tex-math><?CDATA $ 2p $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M1.jpg" xlink:type="simple" />
</jats:inline-formula>) radioactivity. Using this formula, the calculated
<jats:inline-formula>
<jats:tex-math><?CDATA $ 2p $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M2.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity half-lives are in good agreement with the experimental data as well as with calculated results obtained by Goncalves <jats:italic>et al</jats:italic>. [<jats:italic>Phys. Lett. B</jats:italic>
<jats:bold>774</jats:bold>, 14 (2017)] using the effective liquid drop model (ELDM), Sreeja <jats:italic>et al</jats:italic>. [<jats:italic>Eur. Phys. J. A</jats:italic>
<jats:bold>55</jats:bold>, 33 (2019)] using a four-parameter empirical formula, and Cui <jats:italic>et al</jats:italic>. [<jats:italic>Phys. Rev. C</jats:italic>
<jats:bold>101</jats:bold>: 014301 (2020)] using a generalized liquid drop model (GLDM). In addition, this two-parameter empirical formula is extended to predict the half-lives of 22 possible
<jats:inline-formula>
<jats:tex-math><?CDATA $ 2p $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M4.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity candidates with
<jats:inline-formula>
<jats:tex-math><?CDATA $ 2p $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M5.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity released energy
<jats:inline-formula>
<jats:tex-math><?CDATA $ Q_{2p} \gt, 0 $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M6.jpg" xlink:type="simple" />
</jats:inline-formula>, obtained from the latest evaluated atomic mass table AME2016. The predicted results are highly consistent with those obtained using other theoretical models such as the ELDM, GLDM and four-parameter empirical formula.
</jats:p>
期刊:
EUROPEAN PHYSICAL JOURNAL C,2021年81(1):1-7 ISSN:1434-6044
通讯作者:
Chu, Peng-Cheng
作者机构:
[Liu, He; Zhang, Xiao-Min; Chu, Peng-Cheng] Qingdao Univ Technol, Sci Sch, Res Ctr Theoret Phys, Qingdao 266033, Peoples R China.;[Liu, He; Zhang, Xiao-Min; Chu, Peng-Cheng] Qingdao Univ Technol, Res Ctr Theoret Phys, Qingdao 266033, Peoples R China.;[Zhou, Yi] Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266033, Peoples R China.;[Jiang, Yao-Yao; Ma, Hong-Yang] Qingdao Univ Technol, Qingdao 266033, Peoples R China.;[Jiang, Yao-Yao; Ma, Hong-Yang] Qingdao Univ Technol, Quantum Phys Lab, Qingdao 266033, Peoples R China.
通讯机构:
[Chu, Peng-Cheng] Q;Qingdao Univ Technol, Sci Sch, Res Ctr Theoret Phys, Qingdao 266033, Peoples R China.;Qingdao Univ Technol, Res Ctr Theoret Phys, Qingdao 266033, Peoples R China.
摘要:
<jats:title>Abstract</jats:title><jats:p>We study the thermodynamic properties of asymmetric quark matter and large mass quark stars within the confined-isospin-density-dependent-quark-mass model. We find that the quark matter symmetry energy should be very large in order to describe the recent discovered heavy compact stars PSR J0348+0432 (<jats:inline-formula><jats:alternatives><jats:tex-math>$$\text {2.01}\pm \text {0.04}M_{\odot }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mtext>2.01</mml:mtext>
<mml:mo>±</mml:mo>
<mml:mtext>0.04</mml:mtext>
<mml:msub>
<mml:mi>M</mml:mi>
<mml:mo>⊙</mml:mo>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>), MSP J0740+6620 (<jats:inline-formula><jats:alternatives><jats:tex-math>$$\text {2.14}\pm ^\text {0.10}_\text {0.09}M_{\odot }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mtext>2.14</mml:mtext>
<mml:msubsup>
<mml:mo>±</mml:mo>
<mml:mtext>0.09</mml:mtext>
<mml:mtext>0.10</mml:mtext>
</mml:msubsup>
<mml:msub>
<mml:mi>M</mml:mi>
<mml:mo>⊙</mml:mo>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> of 68.3<jats:inline-formula><jats:alternatives><jats:tex-math>$$\%$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mo>%</mml:mo>
</mml:math></jats:alternatives></jats:inline-formula> credibility interval and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\text {2.14}\pm ^\text {0.20}_\text {0.18}M_{\odot }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mtext>2.14</mml:mtext>
<mml:msubsup>
<mml:mo>±</mml:mo>
<mml:mtext>0.18</mml:mtext>
<mml:mtext>0.20</mml:mtext>
</mml:msubsup>
<mml:msub>
<mml:mi>M</mml:mi>
<mml:mo>⊙</mml:mo>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> of 95.4<jats:inline-formula><jats:alternatives><jats:tex-math>$$\%$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mo>%</mml:mo>
</mml:math></jats:alternatives></jats:inline-formula> credibility interval) and PSR J2215+5135 (2.27<jats:inline-formula><jats:alternatives><jats:tex-math>$$\pm ^\text {0.10}_\text {0.09}M_{\odot }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msubsup>
<mml:mo>±</mml:mo>
<mml:mtext>0.09</mml:mtext>
<mml:mtext>0.10</mml:mtext>
</mml:msubsup>
<mml:msub>
<mml:mi>M</mml:mi>
<mml:mo>⊙</mml:mo>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>) as QSs. The tidal deformability <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda _{1.4}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>Λ</mml:mi>
<mml:mrow>
<mml:mn>1.4</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> of the QSs is also investigated in this work, and the result indicates that <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda _{1.4}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>Λ</mml:mi>
<mml:mrow>
<mml:mn>1.4</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> may depend on the isospin effects and the strength / orientation distribution of the magnetic fields inside the quark stars.</jats:p>
作者机构:
[Li, Xiao-Hua; Pan, Xiao; Liu, Hong-Ming; Zou, You-Tian] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Bao, Xiao-Jun] Hunan Normal Univ, Changsha 410081, Peoples R China.;[Li, Xiao-Hua] Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua; Bao, Xiao-Jun; Bao, XJ; Li, XH] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Peoples R China.
通讯机构:
[Li, Xiao-Hua] U;[Bao, Xiao-Jun; Bao, XJ; Li, XH] H;Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;Hunan Normal Univ, Changsha 410081, Peoples R China.;Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.
关键词:
alpha decay;alpha decay preformation factor;shell closure;generalized liquid drop model
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In this study, we systematically investigate the
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M4.jpg" xlink:type="simple" />
</jats:inline-formula> decay preformation factors,
<jats:inline-formula>
<jats:tex-math><?CDATA $P_{\alpha}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M5.jpg" xlink:type="simple" />
</jats:inline-formula>, and the
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M6.jpg" xlink:type="simple" />
</jats:inline-formula> decay half-lives of 152 nuclei around <jats:italic>Z</jats:italic> = 82, <jats:italic>N</jats:italic> = 126 closed shells based on the generalized liquid drop model (GLDM) with
<jats:inline-formula>
<jats:tex-math><?CDATA $P_{\alpha}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M7.jpg" xlink:type="simple" />
</jats:inline-formula> being extracted from the ratio of the calculated
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M8.jpg" xlink:type="simple" />
</jats:inline-formula> decay half-life to the experimental one. The results show that there is a remarkable linear relationship between
<jats:inline-formula>
<jats:tex-math><?CDATA $P_{\alpha}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M9.jpg" xlink:type="simple" />
</jats:inline-formula> and the product of valance protons (holes)
<jats:inline-formula>
<jats:tex-math><?CDATA $N_p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M10.jpg" xlink:type="simple" />
</jats:inline-formula> and valance neutrons (holes)
<jats:inline-formula>
<jats:tex-math><?CDATA $N_n$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M11.jpg" xlink:type="simple" />
</jats:inline-formula>. At the same time, we extract the
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M12.jpg" xlink:type="simple" />
</jats:inline-formula> decay preformation factor values of the even–even nuclei around the <jats:italic>Z</jats:italic> = 82, <jats:italic>N</jats:italic> = 126 closed shells from the study of Sun
<jats:inline-formula>
<jats:tex-math><?CDATA ${et\ al.}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M13.jpg" xlink:type="simple" />
</jats:inline-formula> [J. Phys. G: Nucl. Part. Phys., <jats:bold>45</jats:bold>: 075106 (2018)], in which the
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M14.jpg" xlink:type="simple" />
</jats:inline-formula> decay was calculated by two different microscopic formulas. We find that the
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M15.jpg" xlink:type="simple" />
</jats:inline-formula> decay preformation factors are also related to
<jats:inline-formula>
<jats:tex-math><?CDATA $N_pN_n$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M16.jpg" xlink:type="simple" />
</jats:inline-formula>. Combining with our previous studies [Sun
<jats:inline-formula>
<jats:tex-math><?CDATA ${et\ al.}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M17.jpg" xlink:type="simple" />
</jats:inline-formula>, Phys. Rev. C, <jats:bold>94</jats:bold>: 024338 (2016); Deng
<jats:inline-formula>
<jats:tex-math><?CDATA ${et\ al.}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M18.jpg" xlink:type="simple" />
</jats:inline-formula>, ibid. <jats:bold>96</jats:bold>: 024318 (2017); Deng
<jats:inline-formula>
<jats:tex-math><?CDATA ${et\ al.}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M19.jpg" xlink:type="simple" />
</jats:inline-formula>, ibid. <jats:bold>97</jats:bold>: 044322 (2018)] and that of Seif
<jats:inline-formula>
<jats:tex-math><?CDATA ${et\ al.,}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M20.jpg" xlink:type="simple" />
</jats:inline-formula> [Phys. Rev. C, <jats:bold>84</jats:bold>: 064608 (2011)], we suspect that this phenomenon of linear relationship for the nuclei around the above closed shells is model-independent. This may be caused by the effect of the valence protons (holes) and valence neutrons (holes) around the shell closures. Finally, using the formula obtained by fitting the
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M21.jpg" xlink:type="simple" />
</jats:inline-formula> decay preformation factor data calculated by the GLDM, we calculate the
<jats:inline-formula>
<jats:tex-math><?CDATA $\alpha$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_094106_M22.jpg" xlink:type="simple" />
</jats:inline-formula> decay half-lives of these nuclei. The calculated results agree with the experimental data well.
</jats:p>
通讯机构:
[Deng, Jun-Gang] U;Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
关键词:
even-even nuclei with Z = 120;hindrance factor;two-potential approach;α decay
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In the present work, we predict the <jats:italic>α</jats:italic> decay half-lives of unknown even-even nuclei<jats:sup>296–308</jats:sup>120 within the two-potential approach, whose <jats:italic>α</jats:italic> decay energy <jats:italic>Q<jats:sub>α</jats:sub>
</jats:italic> is calculated using WS3+ mass model. To reduce the deviations between the predictions and experimental data due to nuclear shell effect, the analytic formula of <jats:italic>α</jats:italic> decay hindrance factor is introduced to the two-potential approach, whose parameters had been extracted from even-even nuclei in the region of 82 < <jats:italic>Z</jats:italic> ≤ 126 and 152 < <jats:italic>N</jats:italic> ≤ 184 in our previous work [Deng <jats:italic>et al</jats:italic>., Chin. Phys. C <jats:bold>42</jats:bold> (2018) 044102]. In addition, for comparing, we use a type of <jats:italic>α</jats:italic> decay general formula Universal Decay Law (UDL) and a semi-empirical formula in the superheavy nucleus (SEMFLS) to calculate the half-lives of even-even nuclei<jats:sup>296–308</jats:sup>120. The results indicate that our predicted values and the calculated values of the above two empirical formulas are mutually confirmed. Meanwhile, we systematically study <jats:italic>α</jats:italic> decay chains of<jats:sup>296–308</jats:sup>120 and predict the decay modes for superheavy nuclei to help to identify new superheavy isotopes.</jats:p>
摘要:
We have investigated the properties of strange quark matter and quark stars at finite temperature within the confined isospin-density-dependent mass (CIDDM) model. The newly discovered heavy compact stars PSR J0348+0432 ( 2.01±0.04 M⊙) and MSP J0740+6620 ( 2.14±0.090.10 M⊙ of 68.3% credibility interval and 2.14±0.180.20 M⊙ of 95.4% credibility interval) can be well described as quark stars with large quark matter symmetry energy within the CIDDM model in this work. In particular, we also calculate the properties of the protoquark stars (PQSs) at the heating and cooling stages along the star evolution line, and we find that the tidal deformability of PQSs increases with temperature in the heating stages within the CIDDM model.
摘要:
We investigate the isospin properties of the strange quark matter (SQM) and quark stars (QSs) in the framework of the isospin-dependent confining quark matter (ICQM) model and confined-isospin and density-dependent mass (CIDDM) model. Within these two isospin-dependent quark mass phenomenological models, we study the quark matter symmetry energy, the stability of strange quark matter, the quark fractions, the isospin asymmetry, and the quark mass asymmetry in SQM, and the mass-radius relation of quark stars. We find that including isospin dependence of the quark mass can significantly influence the isospin properties of the quark matter. Recently, the LIGO-Virgo collaboration reported their detection of gravitational wave (GW) signals GW170817, which are originating from a binary compact star merger. Using the ICQM model and CIDDM model, we describe the compact stars with the new maximum mass limits 2.01−0.04+0.04≤M/M⊙≤2.16−0.15+0.17 as quark stars, and the dimensionless tidal deformabilities of QSs are also investigated in this work.