作者机构:
[邓声文; 朱恩平; 赵鹏程; Zhai, Pengdi; 刘紫静; 余清远] School of Nuclear Science and Technology, University of South China, Hengyang;421001, China;Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang;[邓声文; 朱恩平; 赵鹏程; Zhai, Pengdi; 刘紫静; 余清远] 421001, China;[赵鹏程] 421001, China<&wdkj&>Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang
作者机构:
[谢宇希; 颜拥军; 李翔; 丁天松; 马川] School of Nuclear Science and Technology, University of South China, Hengyang;421001, China;College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang;421008, China;[谢宇希] 421001, China <&wdkj&> College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In this work, we systematically study the two-proton (
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M1.jpg" xlink:type="simple" />
</jats:inline-formula>) radioactivity half-lives using the two-potential approach, and the nuclear potential is obtained using the Skyrme-Hartree-Fock approach and the Skyrme effective interaction of SLy8. For true
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M2.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity (
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M3.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \gt,$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M4.jpg" xlink:type="simple" />
</jats:inline-formula> 0 and
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M5.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \lt $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M6.jpg" xlink:type="simple" />
</jats:inline-formula>0, where
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M7.jpg" xlink:type="simple" />
</jats:inline-formula> and
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M8.jpg" xlink:type="simple" />
</jats:inline-formula> are the released energies of the one-proton and two-proton radioactivity, respectively), the standard deviation between the experimental half-lives and our theoretical calculations is 0.701. In addition, we extend this model to predict the half-lives of 15 possible
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M9.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity candidates with
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M10.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \gt,$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M11.jpg" xlink:type="simple" />
</jats:inline-formula> 0 obtained from the evaluated atomic mass table AME2016. The calculated results indicate a clear linear relationship between the logarithmic
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M12.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity half-lives (
<jats:inline-formula>
<jats:tex-math><?CDATA ${\log}_{10}T_{1/2}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M13.jpg" xlink:type="simple" />
</jats:inline-formula>) and coulomb parameters [(
<jats:inline-formula>
<jats:tex-math><?CDATA $Z_{d}^{0.8}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M14.jpg" xlink:type="simple" />
</jats:inline-formula>+
<jats:inline-formula>
<jats:tex-math><?CDATA ${l}^{\,0.25}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M15.jpg" xlink:type="simple" />
</jats:inline-formula>)
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}^{-1/2}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M16.jpg" xlink:type="simple" />
</jats:inline-formula>] considering the effect of orbital angular momentum proposed by Liu
<jats:inline-formula>
<jats:tex-math><?CDATA $et$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M17.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $al.$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M18.jpg" xlink:type="simple" />
</jats:inline-formula> [Chin. Phys. C 45, 024108 (2021)]. For comparison, the generalized liquid drop model (GLDM), effective liquid drop model (ELDM), and Gamow-like model are also used. Our predicted results are consistent with those obtained using other relevant models.
</jats:p>
作者机构:
[陈宝文; 邓坚] Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu;610213, China;[凌煜凡; 胡宝珑; 王天石; 朱恩平; 王婷] School of Nuclear Science and Technology, University of South China, Hengyang;421001, China;[陈宝文; 邓坚] 610213, China
摘要:
利用BaF2晶体对γ射线探测效率高、时间分辨率好的特点,研制了国内首套由40个BaF2探测器单元组成的γ全吸收型探测装置,用于在线测量中子俘获反应截面。在HI-13串列加速器上建立250~850 keV的中子源,其0°角的源强约为5.09×106 n/(Sr·s),使用γ全吸收型探测装置,通过瞬发γ射线法测量了93Nb、197Au、natC和空样品的实验数据。根据BaF2探测器信号的特征,采用了基线补偿、软件阈值设置、时间窗限定、脉冲幅度积分增长率设置和快慢成分比设置等多种数字化波形分析方法,剔除噪声信号以提高效应本底比。以197Au样品数据为标准,natC样品数据为样品相关性本底,空样品数据为样品无关性本底,采用相对测量法得到了93Nb的中子俘获反应截面实验数据。通过与ENDF评价库数据的比较,验证了测量装置和技术方法的可行性。 The first gamma-ray total absorption facility composed of 40 BaF2 detector units has been constructed in China. Utilizing the property of high detection efficiency and good time resolution for gamma rays of BaF2 crystal, the facility will be used to measure on-line the cross section of neutron capture reaction. Neutron source of 250 keV~850 keV was set up on the HI-13 tandem accelerator, its source intensity at 0° was about 5.09 × 106 n/(Sr·s). The experimental data of 93Nb, 197Au, natC and empty samples were measured by the prompt gamma ray method with gamma-ray total absorption facility. According to the characteristics of BaF2 detector signal, a variety of digital waveform analysis methods were adopted to eliminate noise signal as much as possible to improve the effect background ratio, such as baseline compensation, software threshold setting, time window limitation, pulse amplitude integral growth rate setting and fast slow component ratio setting. The experimental data of 93Nb neutron capture reaction cross section was obtained by relative measurement method. The data of 197Au sample was the standard, the data of natC sample was the sample correlation background, and the data of empty sample was the sample independence background. The feasibility of the measurement facility and technical method was verified by comparing with the data of ENDF evaluation library.
作者机构:
[杨治虎] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China;[郭艳玲; 陈林] School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China;[朱志超] School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China;School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China;[方兴; 徐俊奎; 宋张勇; 孙良亭; 于得洋; 刘俊亮; 钱程; 冯勇; 王伟; 邵曹杰] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China, School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
通讯机构:
[Song, Z.] I;[Song, Z.; Guo, Y.] S;Institute of Modern Physics, China;School of Nuclear Science and Technology, China
摘要:
A compact broadband Compton spectrometer with high spectral resolution has been designed to detect spectra of laser-driven high-flux gamma rays. The primary detection range of the gamma-ray spectrum is 0.5 MeV–13 MeV, although a secondary harder gamma-ray region of 13 MeV–30 MeV can also be covered. The Compton-scattered electrons are spectrally resolved using a curved surface detector and a nonuniform magnetic field produced by a pair of step-like magnets. This design allows a compact structure, a wider bandwidth, especially in the lower-energy region of 0.5 MeV–2 MeV, and optimum spectral resolution. The spectral resolution is 5%–10% in the range 4 MeV–13 MeV and better than 25% in the range 0.5 MeV–4 MeV (with an Al converter of 0.25 mm thickness and a collimator of 1 cm inner diameter). Low-Z plastic materials are used on the inner surface of the spectrometer to suppress noise due to secondary X-ray fluorescence. The spectrometer can be adjusted flexibly via a specially designed mechanical component. An algorithm based on a regularization method has also been developed to reconstruct the gamma-ray spectrum from the scattered electrons.
作者机构:
[孙昌昊; 肖德涛] Hunan Provincial Key Laboratory of Radon, School of Nuclear Science and Technology, University of South China, Hengyang;421001, China;[张磊; 王善强] State Key Laboratory of NBC Protection for Civilian, Beijing;102205, China;[郭秋菊] State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing
作者机构:
[过灵飞; 何正忠; 肖德涛; 黎世铖; 林姝婧] Radon Key Laboratory of Hunan Province, School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
作者机构:
[Li, Xiao-Hua; Pan, Xiao; Liu, Hong-Ming; Xiang, Dong; Zou, You-Tian] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[He, Biao] Cent South Univ, Coll Phys & Elect, Changsha 410083, Peoples R China.;[Li, Xiao-Hua; Xiang, Dong] Univ South China, Natl Exemplary Base Int Sci & Tech Collaborat Nuc, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua; Xiang, Dong] Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Peoples R China.
通讯机构:
[Xiao-Hua Li; Dong Xiang] S;School of Nuclear Science and Technology, University of South China, Hengyang 421001, China<&wdkj&>National Exemplary Base for International Sci & Tech. Collaboration of Nuclear Energy and Nuclear Safety, University of South China, Hengyang 421001, China<&wdkj&>Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang 421001, China<&wdkj&>School of Nuclear Science and Technology, University of South China, Hengyang 421001, China<&wdkj&>National Exemplary Base for International Sci & Tech. Collaboration of Nuclear Energy and Nuclear Safety, University of South China, Hengyang 421001, China<&wdkj&>Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang 421001, China<&wdkj&>Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, China
关键词:
the released energy of proton radioactivity;liquid-drop model;shell correction
摘要:
In this work, based on the liquid-drop model and considering the shell correction, we propose a simple formula to calculate the released energy of proton radioactivity (Qp). The parameters of this formula are obtained by fitting the experimental data of 29 nuclei with proton radioactivity from ground state. The standard deviation between the theoretical values and experimental ones is only 0.157 MeV. In addition, we extend this formula to calculate 51 proton radioactivity candidates in region 51 ≤ Z ≤ 83 taken from the latest evaluated atomic mass table AME2016 and compared with the Qp calculated by WS4 and HFB-29. The calculated results indicate that the evaluation ability of this formula for Qp is inferior to WS4 while better than HFB-29.