作者机构:
[Luo, Song; Li, Xiao-Hua; Qi, Lin-Jing; Zhang, Dong-Meng] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Wu, Xi-Jun] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.;[Liang, Chun-Tian] Tianjin Chengjian Univ, Sch Sci, Tianjin 300384, Peoples R China.;[Li, Xiao-Hua] Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Equ, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contro, Changsha 410081, Peoples R China.
关键词:
cluster radioactivity;cluster-formation model (CFM);half-lives;preformation probability
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In the present work, based on the Wentzel-Kramers-Brillouin (WKB) theory, considering the cluster preformation probability (<jats:inline-formula>
<jats:tex-math><?CDATA $ P_{c} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M1.jpg" xlink:type="simple" />
</jats:inline-formula>), we systematically investigate the cluster radioactivity half-lives of 22 trans-lead nuclei ranging from <jats:sup>221</jats:sup>Fr to <jats:sup>242</jats:sup>Cm. When the mass number of the emitted cluster <jats:inline-formula>
<jats:tex-math><?CDATA $ A_{c} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M3.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \lt $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M4.jpg" xlink:type="simple" />
</jats:inline-formula> 28, <jats:inline-formula>
<jats:tex-math><?CDATA $P_{c} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_Z-20221112161050.jpg" xlink:type="simple" />
</jats:inline-formula> is obtained by the exponential relationship of <jats:inline-formula>
<jats:tex-math><?CDATA $ P_{c} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M5.jpg" xlink:type="simple" />
</jats:inline-formula> to the <jats:italic>α</jats:italic> decay preformation probability (<jats:inline-formula>
<jats:tex-math><?CDATA $ P_{\alpha} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M6.jpg" xlink:type="simple" />
</jats:inline-formula>) proposed by R. Blendowskeis <jats:inline-formula>
<jats:tex-math><?CDATA $ et $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M7.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ al. $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M8.jpg" xlink:type="simple" />
</jats:inline-formula> [Phys. Rev. Lett. <jats:bold>61</jats:bold>, 1930 (1988)], while <jats:inline-formula>
<jats:tex-math><?CDATA $ P_{\alpha} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M9.jpg" xlink:type="simple" />
</jats:inline-formula> is calculated through the cluster-formation model (CFM). When <jats:inline-formula>
<jats:tex-math><?CDATA $ A_{c} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M10.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \ge $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M11.jpg" xlink:type="simple" />
</jats:inline-formula> 28, <jats:inline-formula>
<jats:tex-math><?CDATA $ P_{c} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_Z-20221112161420.jpg" xlink:type="simple" />
</jats:inline-formula> is calculated through the charge-number dependence of <jats:inline-formula>
<jats:tex-math><?CDATA $ P_{c} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M12.jpg" xlink:type="simple" />
</jats:inline-formula> on the decay products proposed by Ren <jats:inline-formula>
<jats:tex-math><?CDATA $ et $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M13.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ al. $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M14.jpg" xlink:type="simple" />
</jats:inline-formula> [Phys. Rev. C <jats:bold>70</jats:bold>, 034304 (2004)]. The half-lives of cluster radioactivity have been calculated by the density-dependent cluster model [Phys. Rev. C <jats:bold>70</jats:bold>, 034304 (2004)] and by the unified formula of half-lives for alpha decay and cluster radioactivity [Phys. Rev. C <jats:bold>78</jats:bold>, 044310 (2008)]. For comparison, a universal decay law (UDL) proposed by Qi <jats:inline-formula>
<jats:tex-math><?CDATA $ et $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M15.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ al. $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_47_1_014101_M16.jpg" xlink:type="simple" />
</jats:inline-formula> [Phys. Rev. C <jats:bold>80</jats:bold>, 044326 (2009)], a semi-empirical model for both <jats:italic>α</jats:italic> decay and cluster radioactivity proposed by Santhosh [J. Phys. G: Nucl. Part. Phys. <jats:bold>35</jats:bold>, 085102 (2008)], and a unified formula of half-lives for alpha decay and cluster radioactivity [Phys. Rev. C <jats:bold>78</jats:bold>, 044310 (2008)] are also used. The calculated results of our work, Ni's formula , and the UDL can well reproduce the experimental data and are better than those of Santhosh's model. In addition, we extend this model to predict the half-lives for 51 nuclei, whose cluster radioactivity is energetically allowed or observed but not yet quantified in NUBASE2020.</jats:p>
作者机构:
[Li, Xiao-Hua; Liu, Hong-Ming; Gui, Hai-Feng] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Wu, Xi-Jun] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.;[Chu, Peng-Cheng] Qingdao Univ Technol, Res Ctr Theoret Phys, Sci Sch, Qingdao 266033, Peoples R China.;[He, Biao] Cent South Univ, Coll Phys & Elect, Changsha 410083, Peoples R China.;[Li, Xiao-Hua] Univ South China, Natl Exemplary Base Int Sci & Tech Collaborat Nuc, Hengyang 421001, Peoples R China.
通讯机构:
[Li, X.-H.] S;School Of Nuclear Science And Technology, China
关键词:
alpha-decay;deformed two-potential approach;superheavy nuclei;magic number
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In this work, we systematically study the <jats:italic>α</jats:italic> decay half-lives of 196 even–even nuclei using a two-potential approach improved by considering nuclear deformation. The results show that the accuracy of this model has been improved after considering nuclear deformation. In addition, we extend this model to predict the <jats:italic>α</jats:italic> decay half-lives of <jats:italic>Z</jats:italic> = 118 and 120 isotopes by inputting the <jats:italic>α</jats:italic> decay energies extracted from the Weizsacker–Skyrme-type (WS-type) mass model, a simple nuclear mass formula, relativistic continuum Hartree–Bogoliubov theory and Duflo-Zuker-19 (DZ19) mass model. It is useful for identifying the new superheavy elements or isotopes for future experiments. Finally, the predicted <jats:italic>α</jats:italic> decay energies and half-lives of <jats:italic>Z</jats:italic> = 118 and 120 isotopes are analyzed, and the shell structure of superheavy nuclei is discussed. It shows that the shell effect is obvious at <jats:italic>N</jats:italic> = 184, while the shell effect at <jats:italic>N</jats:italic> = 178 depends on the nuclear mass model.</jats:p>
作者机构:
[Li, Xiao-Hua; Pan, Xiao; Zou, You-Tian] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua; Wu, Xi-Jun] Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Peoples R China.;[Wu, Xi-Jun] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.;[He, Biao] Cent South Univ, Coll Phys & Elect, Changsha 410083, Peoples R China.
通讯机构:
[Xiao-Hua Li] S;School of Nuclear Science and Technology, University of South China, Hengyang 421001, China<&wdkj&>Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang 421001, China<&wdkj&>Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, China
关键词:
favored one proton radioactivity;one-parameter model;half-lives
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In the present work, a phenomenological one-parameter model (OPM) based on the Wentzel-Kramers-Brillouin (WKB) theory is applied to study the favored one proton radioactivity (the orbital angular momentum <jats:italic>l</jats:italic> taken away by the emitted proton is equal to zero) half-lives. The calculated results can reproduce the experimental data well within a factor of ∼3. In addition, we extend the OPM to predict the half-lives of possible favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020. For comparison, a universal decay law of one proton radioactivity (UDLP) is also used. It is obviously found that our predicted results are close to the ones using UDLP. The predictions are helpful for searching for the new nuclides with favored one proton radioactivity.</jats:p>
作者机构:
[谭清懿; 杨开建; 乔冠瑾] Department of Electrical Engineering, University of South China, Hengyang, 421001, China;[杜丹] Department of Mathematics and Physics, University of South China, Hengyang, 421001, China;[潘光祖; 周华; 龚学余] Department of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
通讯机构:
[Du, D.] D;Department of Mathematics and Physics, China
作者机构:
[刘杰豪; 洪昌寿] School of Resource Environment and Safety Engineering, University of South China, Hunan, Hengyang, 421000, China;College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong, Shenzhen, 518000, China;[徐正华] College of Mathematics and Science, University of South China, Hunan, Hengyang, 421000, China;[刘永] School of Resource Environment and Safety Engineering, University of South China, Hunan, Hengyang, 421000, China, College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong, Shenzhen, 518000, China
通讯机构:
[Liu, Y.] S;School of Resource Environment and Safety Engineering, Hunan, China
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In the present work, we systematically study the <jats:italic>α-</jats:italic>decay half-lives of uranium (<jats:italic>Z</jats:italic>=92) isotopes based on the Gamow model with a screened electrostatic barrier. There are only two adjustable parameters in our model i.e. the parameter <jats:italic>g</jats:italic> and the screening parameter <jats:italic>t</jats:italic> in the Hulthen potential for considering the screened electrostatic effect of the Coulomb potential. The calculated results are in good agreement with experimental data, and the corresponding root-mean-square (rms) deviations of uranium isotopes with <jats:italic>α</jats:italic> transition orbital angular momentum <jats:italic>l</jats:italic>=0 and <jats:italic>l</jats:italic>=2 are 0.141 and 0.340, respectively. Moreover, we extend this model to predict <jats:italic>α-</jats:italic>decay half-lives of uranium isotopes whose <jats:italic>α</jats:italic> decay is energetically allowed or observed but not yet quantified in NUBASE2020. For comparison, the modified Hatsukawa formula (XLZ), the unified Royer formula (DZR), the universal decay law (UDL) and the Viola–Seaborg–Sobiczewski formula (VSS) are also used. The predictions are basically consistent with each other. Meanwhile, the results also indicate that <jats:italic>N</jats:italic>=126 shell closure is still robust at <jats:italic>Z</jats:italic>=92 and the spectroscopic factor <jats:inline-formula>
<jats:tex-math><?CDATA $ S_{\alpha} $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_11_114103_M1.jpg" xlink:type="simple" />
</jats:inline-formula> is almost the same for uranium isotopes with the same <jats:italic>l</jats:italic>.</jats:p>
作者机构:
[Cheng, Jun-Hao; Li, Xiao-Hua] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Zhang, Zhen] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China.;[Wu, Xi-Jun] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.;[Chu, Peng-Cheng] Qingdao Technol Univ, Sch Sci, Qingdao 266000, Peoples R China.;[Li, Xiao-Hua] Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.
关键词:
proton radioactivity;Skyrme;Hartree-Fock;macroscopic quantities of nuclear matter
摘要:
In this study, we systematically investigate the proton radioactivity half-lives of 33 spherical nuclei based on the relationship between Skyrme parameters and the macroscopic quantities of nuclear matter. Using the two-potential approach with the spherical Skyrme-Hartree-Fock model, the correlation between proton radioactivity half-life and the macroscopic quantities is analyzed. Moreover, we obtain a new Skyrme parameter set by fitting the two most weighted macroscopic quantities. Compared with the Skyrme parameters MSL0 and the theoretical model of proton radioactivity UDLP, the theoretical proton radioactivity half-life calculated using the new Skyrme parameter set can better reproduce the experimental data.
作者机构:
[Zhu, De-Xing; Li, Xiao-Hua; Xu, Yang-Yang] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Liu, Hong-Ming] Fudan Univ, Inst Modern Phys, Shanghai 200433, Peoples R China.;[Wu, Xi-Jun] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.;[He, Biao] Cent South Univ, Coll Phys & Elect, Changsha 410083, Peoples R China.;[Li, Xiao-Hua] Univ South China, Natl Exemplary Base Int Sci & Tech Collaborat Nuc, Hengyang 421001, Peoples R China.
通讯机构:
[Xiao-Hua Li] S;School of Nuclear Science and Technology, University of South China, Hengyang, China<&wdkj&>National Exemplary Base for International Sci & Tech. Collaboration of Nuclear Energy and Nuclear Safety, University of South China, Hengyang, China<&wdkj&>Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang, China<&wdkj&>Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha, China
作者机构:
[Zhu, De-Xing; Li, Xiao-Hua; Xu, Yang-Yang; Liu, Hong-Ming; Zou, You-Tian] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua] Univ South China, Natl Exemplary Base Int Sci & Tech Collaborat Nuc, Hengyang 421001, Peoples R China.;[Li, Xiao-Hua] Univ South China, Cooperat Innovat Ctr Nucl Fuel Cycle Technol & Eq, Hengyang 421001, Peoples R China.;[Wu, Xi-Jun] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.;[Chu, Peng-Cheng] Qingdao Technol Univ, Sch Sci, Inst Theoret Phys, Qingdao 266000, Peoples R China.
关键词:
two-proton radioactivity;Coulomb and proximity potential model;half-life
摘要:
Considering the preformation probability of the two emitted protons in the parent nucleus, we extend the Coulomb and proximity potential model (CPPM) to systematically study two-proton (2p) radioactivity half-lives of the nuclei close to proton drip line. The proximity potential chosen is Prox. 81 proposed by Blocki et al. in 1981. Furthermore, we apply this model to predict the half-lives of possible 2p radioactive candidates whose 2p radioactivity is energetically allowed or observed but not yet quantified in the evaluated nuclear properties table NUBASE2016. The predicted results are in good agreement with those from other theoretical models and empirical formulas, namely the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), Gamow-like model, Sreeja formula and Liu formula.
作者机构:
[向东; 夏彦博; 宋泽宸; 曹锦佳; 管沪楠; 龚学余] School of Nuclear Science and Technology, University of South China, Hengyang;421001, China;[杜丹] School of Mathematics and Physics, University of South China, Hengyang;[向东; 夏彦博; 宋泽宸; 曹锦佳; 杜丹; 管沪楠; 龚学余] 421001, China
作者机构:
[彭延峰; 刘燕飞] Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, 411201, China;[彭志华] School of Mathematics and Physics, University of South China, Hengyang, 421001, China
作者机构:
[Feng, Zhong-Wen; Zhou, Xia; Yang, Shu-Zheng; Zhou, Shi-Qi] China West Normal Univ, Phys & Space Sci Coll, Nanchong 637009, Peoples R China.;[He, Guansheng] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.
通讯机构:
[Feng, Z.-W.] P;Physics and Space Science College, China
关键词:
Joule–Thomson expansion;Maxwell invariant source;higher dimensional nonlinearly AdS black hole
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In this paper, the Joule–Thomson expansion of the higher dimensional nonlinearly anti-de Sitter (AdS) black hole with power Maxwell invariant source is investigated. The results show the Joule–Thomson coefficient has a zero point and a divergent point, which coincide with the inversion temperature <jats:italic>T</jats:italic>
<jats:sub>
<jats:italic>i</jats:italic>
</jats:sub> and the zero point of the Hawking temperature, respectively. The inversion temperature increases monotonously with inversion pressure. For the high-pressure region, the inversion temperature decreases with the dimensionality <jats:italic>D</jats:italic> and the nonlinearity parameter <jats:italic>s</jats:italic>, whereas it increases with the charge <jats:italic>Q</jats:italic>. However, <jats:italic>T</jats:italic>
<jats:sub>
<jats:italic>i</jats:italic>
</jats:sub> for the low-pressure region increase with <jats:italic>D</jats:italic> and <jats:italic>s</jats:italic>, while it decreases with <jats:italic>Q</jats:italic>. The ratio <jats:italic>η</jats:italic>
<jats:sub>BH</jats:sub> between the minimum inversion temperature and the critical temperature does not depend on <jats:italic>Q</jats:italic>, it recovers the higher dimensional Reissner–Nördstrom AdS black hole case when <jats:italic>s</jats:italic> = 1. However, for <jats:italic>s</jats:italic> > 1, it becomes smaller and smaller as <jats:italic>D</jats:italic> increases and approaches a constant when <jats:italic>D</jats:italic> → ∞ . Finally, we found that an increase of mass <jats:italic>M</jats:italic> and <jats:italic>s</jats:italic>, or reducing the charge <jats:italic>Q</jats:italic> and <jats:italic>D</jats:italic> can enhance the isenthalpic curve, and the effect of <jats:italic>s</jats:italic> on the isenthalpic curve is much greater than other parameters.</jats:p>
摘要:
<jats:title>Abstract</jats:title>
<jats:p>In this work, we systematically study the two-proton (
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M1.jpg" xlink:type="simple" />
</jats:inline-formula>) radioactivity half-lives using the two-potential approach, and the nuclear potential is obtained using the Skyrme-Hartree-Fock approach and the Skyrme effective interaction of SLy8. For true
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M2.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity (
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M3.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \gt,$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M4.jpg" xlink:type="simple" />
</jats:inline-formula> 0 and
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M5.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \lt $?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M6.jpg" xlink:type="simple" />
</jats:inline-formula>0, where
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M7.jpg" xlink:type="simple" />
</jats:inline-formula> and
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M8.jpg" xlink:type="simple" />
</jats:inline-formula> are the released energies of the one-proton and two-proton radioactivity, respectively), the standard deviation between the experimental half-lives and our theoretical calculations is 0.701. In addition, we extend this model to predict the half-lives of 15 possible
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M9.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity candidates with
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M10.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $ \gt,$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M11.jpg" xlink:type="simple" />
</jats:inline-formula> 0 obtained from the evaluated atomic mass table AME2016. The calculated results indicate a clear linear relationship between the logarithmic
<jats:inline-formula>
<jats:tex-math><?CDATA $2p$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M12.jpg" xlink:type="simple" />
</jats:inline-formula> radioactivity half-lives (
<jats:inline-formula>
<jats:tex-math><?CDATA ${\log}_{10}T_{1/2}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M13.jpg" xlink:type="simple" />
</jats:inline-formula>) and coulomb parameters [(
<jats:inline-formula>
<jats:tex-math><?CDATA $Z_{d}^{0.8}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M14.jpg" xlink:type="simple" />
</jats:inline-formula>+
<jats:inline-formula>
<jats:tex-math><?CDATA ${l}^{\,0.25}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M15.jpg" xlink:type="simple" />
</jats:inline-formula>)
<jats:inline-formula>
<jats:tex-math><?CDATA $Q_{2p}^{-1/2}$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M16.jpg" xlink:type="simple" />
</jats:inline-formula>] considering the effect of orbital angular momentum proposed by Liu
<jats:inline-formula>
<jats:tex-math><?CDATA $et$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M17.jpg" xlink:type="simple" />
</jats:inline-formula>
<jats:inline-formula>
<jats:tex-math><?CDATA $al.$?></jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M18.jpg" xlink:type="simple" />
</jats:inline-formula> [Chin. Phys. C 45, 024108 (2021)]. For comparison, the generalized liquid drop model (GLDM), effective liquid drop model (ELDM), and Gamow-like model are also used. Our predicted results are consistent with those obtained using other relevant models.
</jats:p>
作者机构:
[彭志华; 吴喜军; 徐海婷; 谭捷] School of Mathematics and Physics, University of South China, Hengyang, 421001, China;[张铭军; 邓柯; 钱楠; 刘卫; 杨果] Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
通讯机构:
[Wu, X.] S;School of Mathematics and Physics, China
关键词:
核石墨;间隙原子;第一性原理;迁移与结合
摘要:
为明确核石墨中间隙原子的存在形态与演化规律,利用第一性原理模拟研究间隙原子间的相互作用及其迁移、结合行为。研究表明:同一石墨片层上的间隙原子间存在引力,间距大于0.5 nm时其相互作用能可忽略;间隙原子倾向于沿扶手椅形方向迁移、结合,两间隙原子结合后降低的结构能约为6.0 e V;在间隙原子迁移过程中,整个迁移、结合反应的能垒约为0.4 eV;石墨中间隙原子最稳定的团簇结构是链状结构,紧邻的螺旋间隙原子结构次之,当结合的间隙原子数目超过6以后,间隙原子的结构将以包含六元碳环的团簇与底面以AB堆垛的形态存在,这是新石墨片层生成的重要机制。
作者机构:
[Peng, Jie] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China.;[Zheng, Lijing] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.;[Wu, Chunsheng] Lianyungang Normal Univ, Dept Math, Lianyungang 222006, Peoples R China.;[Kan, Haibin] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China.;[Kan, Haibin] Shanghai Blockchain Engn Res Ctr, Fudan Zhongan Joint Lab Blockchain & Informat Sec, Shanghai 200433, Peoples R China.
通讯机构:
[Kan, Haibin] F;[Kan, Haibin] S;Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China.;Shanghai Blockchain Engn Res Ctr, Fudan Zhongan Joint Lab Blockchain & Informat Sec, Shanghai 200433, Peoples R China.;Shanghai Inst Adv Commun & Data Sci, Shanghai 200433, Peoples R China.
摘要:
A polynomial f(x)∈ F_q[x] is called a permutation polynomial(PP)over the finite field Fq if the associated mapping f:c 7→ f(c)from Fq to itself is bijective.A PP f is called a complete permutation polynomial if f(x)+ x is a PP.PPs over finite fields of even characteristic have wide applications,including cryptography,coding theory,and communication theory.In many block ciphers with substitution-permutation network structure,the substitution box is usually a PP over F_(2~(2k))for some positive integer k.To resist the differential attacks,the differential uniformity of this polynomial should be as low as possible.However,finding such polynomials is difficult.Even for most known differentially low uniform permutations over F_(2~(2k)),their polynomial representations are difficult to obtain([1-8]).Thus far,only a few classes of differentially low uniform PPs over F_(2~(2k))of few terms have been constructed.Monomial permutations with Gold exponents 2~i +1,Kasami exponents 2~(2i)– 2~i + 1,Inverse exponents 2~n – 2,and the Bracken-Leander exponents 2~(2k)+ 2~k + 1 are differentially 4-uniform.Moreover,when k ≥ 5 is odd,monomials with exponents 2~(k+1)+ 3 and 2~k +2k+1/2 +1 were conjectured by Blondeau et al.and finally verified by Xiong et al.to be differentially 8-uniform permutations.A class of differentially 4-uniform permutation binomial,known as the Bracken-Tan-Tan function,was also determined.However,differentially low uniform permutation trinomials have not been found yet.