版权说明 操作指南
首页 > 成果 > 详情

Multimodal Drug Target Binding Affinity Prediction Using Graph Local Substructure

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Peng, Xun;Ouyang, Chunping;Liu, Yongbin;Yu, Ying;Liu, Jian;...
通讯作者:
Ouyang, CP
作者机构:
[Ouyang, Chunping; Ouyang, CP; Peng, Xun; Liu, Yongbin; Yu, Ying] Univ South China, Sch Comp, Hengyang 421001, Peoples R China.
[Liu, Jian] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, England.
[Chen, Min] Hunan Inst Technol, Sch Comp Sci & Engn, Hengyang 421002, Peoples R China.
通讯机构:
[Ouyang, CP ] U
Univ South China, Sch Comp, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Drugs;Feature extraction;Predictive models;Proteins;Protein engineering;Adaptation models;Compounds;Drug target binding affinity;deep learning;multimodal fusion;adaptive structure aware pooling;DropNode
期刊:
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
ISSN:
2168-2194
年:
2025
卷:
29
期:
3
页码:
1625-1634
基金类别:
Natural Science Foundation of Hunan Province [2022JJ30495]; Scientific Research Fund of Hunan Provincial Education Department [22A0316]; Postgraduate Scientific Research Innovation Project of Hunan Province [CX20220986]; Scientific Research Fund of Hunan Provincial Education Department; Postgraduate Scientific Research Innovation Project of Hunan Province
机构署名:
本校为第一且通讯机构
摘要:
Predicting the binding affinity of drug target is essential to reduce drug development costs and cycles. Recently, several deep learning-based methods have been proposed to utilize the structural or sequential information of drugs and targets to predict the drug-target binding affinity (DTA). However, methods that rely solely on sequence features do not consider hydrogen atom data, which may result in information loss. Graph-based methods may contain information that is not directly related to the prediction process. Additionally, the lack of structured division can limit the representation of...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com