版权说明 操作指南
首页 > 成果 > 详情

Prediction Modeling of Hot Metal Silicon Content in Blast Furnace Based on PSO-LSSVM

认领
导出
Link by 中国知网会议论文
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Long Hui Wang;Song Gao;Xing Qu;Yao Geng Tang
通讯作者:
Qu, X.
作者机构:
[Wang L.-H.] College of Economics and Management, University of South China, Hengyang 421001, China
[Tang Y.-G.; Gao S.; Qu X.] College of Electrical Engineering, University of South China, Hengyang 421001, China
通讯机构:
[Qu, X.] C
College of Electrical Engineering, , Hengyang 421001, China
语种:
英文
关键词:
Blast furnace;Hot metal silicon content;Least squares support vector machine;Particle swarm optimization;Prediction model
期刊:
Advanced Materials Research
ISSN:
1022-6680
年:
2013
卷:
721
页码:
461-465
会议名称:
2nd International Conference on Materials Science and Manufacturing, ICMSM 2013
会议时间:
29 March 2013 through 31 March 2013
会议地点:
中国湖南张家界
ISBN:
9783037857328
基金类别:
supported by China Hunan Provincial Science & Technology Department under Grant 2012FJ4332
机构署名:
本校为第一机构
院系归属:
电气工程学院
管理学院
摘要:
The hot metal silicon content is important for the quality of the iron, but also as an indicator of the thermal state of the furnace. In order to stable operation of the blast furnace, a model is needed to predict hot metal silicon content more accurately. Towards this goal, a model based on least square support vector machine (LSSVM) is developed to model and predict hot metal silicon content, particle swarm optimization (PSO) is adopted to search the optimal set of the LSSVM model parameters. Prediction experiment is conducted based on the da...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com