版权说明 操作指南
首页 > 成果 > 详情

PEGNet: An Enhanced Ship Detection Model for Dense Scenes and Multiscale Targets

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tang, Xiao;Zhang, Jingyu;Xia, Yunzhi;Cao, Kun;Zhang, Chang
通讯作者:
Xia, YZ
作者机构:
[Zhang, Jingyu; Tang, Xiao; Zhang, Chang; Cao, Kun] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China.
[Xia, Yunzhi; Xia, YZ] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
通讯机构:
[Xia, YZ ] C
Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Densely arranged;multiscale;ship;ship;synthetic aperture radar (SAR);synthetic aperture radar (SAR);target detection;target detection;target detection
期刊:
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
ISSN:
1545-598X
年:
2025
卷:
22
页码:
1-5
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 41904163 and 62302205)
机构署名:
本校为第一机构
院系归属:
机械工程学院
摘要:
In recent years, synthetic aperture radar (SAR) ship detection has seen significant improvements due to the rapid development of deep learning. However, when ship targets are densely arranged or exhibit multiscale variations, there are still issues such as significant differences in aspect ratios, resulting in false alarms, missed detections, and low detection accuracy. To overcome these challenges, this letter introduces a novel detection model, PEGNet, based on Faster R-CNN. First, to identify ship targets at different scales, the path aggregation feature pyramid network (PAFPN) was integrat...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com