版权说明 操作指南
首页 > 成果 > 详情

A Deep Learning-Based Causal Knowledge Extraction Method for Supporting the Development of Nuclear Power Plant Operator Knowledge Base

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fu, Pengfei;Dai, Licao
通讯作者:
Dai, LC
作者机构:
[Fu, Pengfei] Univ South China, Coll Comp Sci, Hengyang, Peoples R China.
[Dai, Licao; Dai, LC] Univ South China, Human Factor Inst, Hengyang, Peoples R China.
通讯机构:
[Dai, LC ] U
Univ South China, Human Factor Inst, Hengyang, Peoples R China.
语种:
英文
关键词:
Human reliability analysis;operator knowledge base;causal knowledge extraction;deep learning;BERT model
期刊:
Nuclear Technology
ISSN:
0029-5450
年:
2024
机构署名:
本校为第一且通讯机构
院系归属:
管理学院
摘要:
In human reliability analysis (HRA) for nuclear power plants, cognitive modeling-based approaches require the development of an operator knowledge base to simulate the cognitive processes of operators. However, existing automatic extraction methods fail to provide knowledge that meets the granularity requirements of cognitive modeling for the development of the operator knowledge base.To address this gap, this paper proposes a deep learning-based extraction method. Specifically, the method utilizes a bidirectional encoder representations from transformers (BERT)-bidirectional long short-term m...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com