版权说明 操作指南
首页 > 成果 > 详情

Minor breaks fault detection in Nuclear Power Plants based on KPCA residual subspace

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Jinghua Yang;Xiaohua Yang*;Jie Liu;Guorui Huang;Meng Li;...
通讯作者:
Xiaohua Yang
作者机构:
School of Nuclear Science and Technology, University of South China, Hengyang, 421200, China
School of Computer Science, University of South China, Hengyang, 421200, China
Hunan Engineering Research Center of Software Evaluation and Testing for Intellectual Equipment, Hengyang, 421200, China
Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, Hengyang, 421001, China
[Jinghua Yang; Guorui Huang] School of Nuclear Science and Technology, University of South China, Hengyang, 421200, China<&wdkj&>Hunan Engineering Research Center of Software Evaluation and Testing for Intellectual Equipment, Hengyang, 421200, China<&wdkj&>Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, Hengyang, 421001, China
通讯机构:
[Xiaohua Yang] S
School of Computer Science, University of South China, Hengyang, 421200, China<&wdkj&>Hunan Engineering Research Center of Software Evaluation and Testing for Intellectual Equipment, Hengyang, 421200, China<&wdkj&>Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, Hengyang, 421001, China
语种:
英文
期刊:
Progress in Nuclear Energy
ISSN:
0149-1970
年:
2026
卷:
191
页码:
106036
基金类别:
CRediT authorship contribution statement Jinghua Yang: Writing – original draft, Investigation, Conceptualization. Xiaohua Yang: Methodology, Investigation, Formal analysis. Jie Liu: Writing – review & editing, Resources, acquisition, Formal analysis. Guorui Huang: Writing – original draft, Methodology, Investigation, Data curation. Meng Li: Visualization, Validation, Supervision. Shiyu Yan: acquisition.
机构署名:
本校为第一且通讯机构
院系归属:
核科学技术学院
摘要:
Nuclear Power Plants (NPPs) are permitted a specific level of leakage during regular operating conditions for process reasons. This paper studies the application of residual subspace kernel principal component analysis and Kullback-Leibler Divergence (RSKPCA-KLD) in the fault detecting of minor breaks, addressing the current limitations of detection thresholds for such occurrences. First of all, given the traditional kernel principal component analysis (KPCA) ignores training data redundancy, preprocessing is implemented to eliminate redundant variables and decrease the training data volume, w...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com