版权说明 操作指南
首页 > 成果 > 详情

A Multitask Deep Learning Approach for Sensor-Based Human Activity Recognition and Segmentation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Duan, Furong;Zhu, Tao*;Wang, Jinqiang;Chen, Liming;Ning, Huansheng;...
通讯作者:
Zhu, Tao;Wan, YP
作者机构:
[Duan, Furong; Wan, YP; Zhu, Tao; Wang, Jinqiang; Wan, Yaping; Zhu, T] Univ South China, Dept Comp Sci, Hengyang 421001, Peoples R China.
[Chen, Liming] Ulster Univ, Sch Comp & Math, Belfast BT37 0QB, North Ireland.
[Ning, Huansheng] Univ Sci & Technol Beijing, Dept Comp & Commun Engn, Beijing 100083, Peoples R China.
通讯机构:
[Wan, YP ; Zhu, T] U
Univ South China, Dept Comp Sci, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Activity recognition;activity segmentation;deep learning (DL);multitask learning (MTL);sensors
期刊:
IEEE Transactions on Instrumentation and Measurement
ISSN:
0018-9456
年:
2023
卷:
72
页码:
1-12
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62006110 and 62071213) Research Foundation of Education Bureau of Hunan Province (Grant Number: 21C0311 and 21B0424) Hengyang Science and Technology Major Project (Grant Number: 202250015428)
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
Deep learning (DL) for sensor-based human activity recognition (HAR) has been a focus of research in recent years. Sensor data stream segmentation is a core element in HAR, which has currently been treated as an independent preprocessing task, usually with a fixed-size window. This has led to two critical problems, namely the multiclass window problem caused by possible multiple activities within a fixed-size window and the fluctuation of prediction results due to noisy data and oversegmentation. To address these research challenges, in this ar...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com