以萨瓦纳船用核动力堆为原型,等比构建了中子-γ混合辐射场多目标优化模型,使用非支配排序遗传算法(NSGA-Ⅱ)与神经网络相结合的屏蔽智能优化方法,将屏蔽层总重量和屏蔽后的剂量率作为优化目标,进行多目标寻优,得到了pareto最优解;选取其中1组最优解分别利用蒙特卡罗方法计算和神经网络预测进行可行性对比验证,在神经网络预测误差允许的范围内,得到的剂量率均满足寻优时设置的约束限值。研究结果表明,该屏蔽智能优化方法对反应堆中子-γ混合射线的屏蔽参数优化是可行的,相比于传统的纯蒙特卡罗方法而言,能在计算准确的前提下极大减少计算时间。