版权说明 操作指南
首页 > 成果 > 详情

Hyperspectral and multispectral image fusion via residual selective kernel attention-based U-net

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Deng, Jiawei;Yang, Bin
通讯作者:
Yang, B
作者机构:
[Yang, Bin; Deng, Jiawei] Univ South China, Sch Elect Engn, 228 Hengqi Rd, Hengyang 421001, Hunan, Peoples R China.
通讯机构:
[Yang, B ] U
Univ South China, Sch Elect Engn, 228 Hengqi Rd, Hengyang 421001, Hunan, Peoples R China.
语种:
英文
关键词:
Deep learning;Image processing;Attention mechanisms;High resolution;HyperSpectral;Hyperspectral image;Lower resolution;Multi-scale features;Multi-spectral image fusions;Multispectral image;Multispectral images;Residual selective kernel attention-based U-net;Image fusion;algorithm;experimental study;image analysis;image resolution;numerical method;spectral resolution
期刊:
International Journal of Remote Sensing
ISSN:
0143-1161
年:
2024
卷:
45
期:
5
页码:
1699-1726
基金类别:
This research was in part supported by the National Natural Science Foundation of China under Grant 61871210.
机构署名:
本校为第一且通讯机构
院系归属:
电气工程学院
摘要:
The fusion of low-resolution hyperspectral image (LR-HSI) and high-resolution multispectral image (HR-MSI) is a crucial technology for producing high-resolution hyperspectral images. Most existing image fusion algorithms based on deep learning do not fully utilize the ability of neural network to extract and process multi-scale features, which leads to the problem of difficulty in fully learning features and ambiguity of features. In order to overcome these issues, a residual selective kernel attention-based U-net named RSKAU-net is designed fo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com