The fusion of low-resolution hyperspectral image (LR-HSI) and high-resolution multispectral image (HR-MSI) is a crucial technology for producing high-resolution hyperspectral images. Most existing image fusion algorithms based on deep learning do not fully utilize the ability of neural network to extract and process multi-scale features, which leads to the problem of difficulty in fully learning features and ambiguity of features. In order to overcome these issues, a residual selective kernel attention-based U-net named RSKAU-net is designed fo...