版权说明 操作指南
首页 > 成果 > 详情

Application of Machine Learning to Background Rejection in Very-high-energy Gamma-Ray Observation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Jie;Lv, Hongkui;Liu, Yang;Huang, Jiajun;Wang, Yu;...
通讯作者:
Li, J
作者机构:
[Lin, Wenbin; Li, Jie] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.
[Lv, Hongkui; Huang, Jiajun] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China.
[Lv, Hongkui] TIANFU Cosm Ray Res Ctr, Chengdu, Sichuan, Peoples R China.
[Lin, Wenbin; Liu, Yang] Univ South China, Sch Comp Sci, Hengyang 421001, Peoples R China.
[Huang, Jiajun] Univ Chinese Acad Sci, Beijing, Peoples R China.
通讯机构:
[Li, J ] U
Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.
语种:
英文
期刊:
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
ISSN:
0067-0049
年:
2025
卷:
276
期:
1
页码:
24
基金类别:
MOST divided by National Natural Science Foundation of China (NSFC)https://doi.org/10.13039/501100001809 [11973025]; National Natural Science Foundation of China
机构署名:
本校为第一且通讯机构
院系归属:
数理学院
摘要:
Identifying gamma rays and rejecting the background of cosmic-ray hadrons are crucial for very-high-energy gamma-ray observations and relevant scientific research. Based on the simulated data from the square kilometer array (KM2A) of LHAASO, eight high-level features were extracted for the gamma/hadron classification. Machine learning (ML) models, including logistic regression, support vector machines, decision trees, random forests, XGBoost, CatBoost, and deep neural networks (DNN) were constructed and trained using data sets of four energy bands ranging from 10 12 to 10 16 eV, and finally fu...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com