版权说明 操作指南
首页 > 成果 > 详情

Three classes of permutation quadrinomials in odd characteristic

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Changhui;Kan, Haibin;Peng, Jie;Zheng, Lijing;Li, Yanjun
通讯作者:
Peng, J
作者机构:
[Peng, Jie; Chen, Changhui] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China.
[Kan, Haibin] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China.
[Kan, Haibin] Shanghai Inst Adv Commun & Data Sci, Shanghai Engn Res Ctr Blockchain, Shanghai 200433, Peoples R China.
[Zheng, Lijing] Univ South China, Sch Math & Phys, Hengyang 421001, Hunan, Peoples R China.
[Li, Yanjun] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China.
通讯机构:
[Peng, J ] S
Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China.
语种:
英文
关键词:
Finite field;Niho exponent;Permutation polynomial;Quadrinomial
期刊:
Cryptography and Communications
ISSN:
1936-2447
年:
2024
卷:
16
期:
2
页码:
351-365
基金类别:
This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB2101703; by the National Natural Science Foundation of China under Grants 61972258 and U19A2066; by the Innovation Action Plan of Shanghai Science and Technology under Grants 20222420800 and 20511102200; by the Key Research and Development Program of Guangdong Province under Grant 2020B0101090001, and by Scientific Research Fund of Hunan Provincial Education Department under Grant 19B485.
机构署名:
本校为其他机构
院系归属:
数理学院
摘要:
In this paper, we construct three classes of permutation quadrinomials with Niho exponents of the form $$f(x)=\alpha _0x^r+\alpha _1x^{s_1(p^m-1)+r}+\alpha _2x^{s_2(p^m-1)+r}+\alpha _3x^{s_3(p^m-1)+r}\in \mathbb {F}_{p^{n}}[x]$$ , where p is an odd prime, $$n=2m $$ is a positive even integer, and $$(r,s_1,s_2,s_3)=(1,\frac{-1}{p^k-2},1,\frac{p^k-1}{p^k-2})$$ , $$(1,\frac{p^k+1}{p^k+2},1,\frac{1}{p^k+2})$$ and (3, 1, 2, 3), respectively. The exponents of the first two classes are considered for the fir...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com