版权说明 操作指南
首页 > 成果 > 详情

Automatic ICD code assignment of Chinese clinical notes based on multilayer attention BiRNN

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yu, Ying;Li, Min;Liu, Liangliang;Fei, Zhihui;Wu, Fang-Xiang;...
通讯作者:
Wang, Jianxin
作者机构:
[Fei, Zhihui; Li, Min; Yu, Ying; Liu, Liangliang; Wang, Jianxin] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China.
[Yu, Ying] Univ South China, Sch Comp Sci & Technol, Hengyang 421001, Peoples R China.
[Wu, Fang-Xiang] Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK S7N 5A9, Canada.
[Wu, Fang-Xiang] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada.
通讯机构:
[Wang, Jianxin] C
Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China.
语种:
英文
关键词:
Codes (symbols);Embeddings;Multilayers;Semantics;Bidirectional recurrent neural networks;Character-enhanced;Clinical notes;Electronic health record;Hierarchical approach;ICD code;International classification of disease;Neural network model;Recurrent neural networks;Article;artificial neural network;attention;Chinese (language);hospital admission;human;International Classification of Diseases;linguistics;machine learning;medical record;multilayer attention bidirectional recurrent neural network;performance;prediction;priority journal;problem solving;short term memory;automation;China;electronic health record;information processing;machine learning;Automation;China;Datasets as Topic;Electronic Health Records;International Classification of Diseases;Machine Learning
期刊:
Journal of Biomedical Informatics
ISSN:
1532-0464
年:
2019
卷:
91
页码:
103114
基金类别:
This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 61622213 , 61732009 , 61772552 , 61772557 , the 111 Project (No. B18059 ), the Hunan Provincial Science and Technology Program ( 2018WK4001 ).
机构署名:
本校为其他机构
院系归属:
计算机科学与技术学院
摘要:
International Classification of Diseases (ICD) code is an important label of electronic health record. The automatic ICD code assignment based on the narrative of clinical documents is an essential task which has drawn much attention recently. When Chinese clinical notes are the input corpus, the nature of Chinese brings some issues that need to be considered, such as the accuracy of word segmentation and the representation of single Chinese characters which contain semantics. Taking the lengthy text of patient notes and the representation of Chinese words into account, we present a multilayer...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com