版权说明 操作指南
首页 > 成果 > 详情

An efficient parallel multi-fidelity multi-objective Bayesian optimization method and application to 3-stage axial compressor with 144 variables

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
He, Youwei;Gui, Qingwen;Luo, Jinliang
通讯作者:
Luo, JL
作者机构:
[Luo, Jinliang; Gui, Qingwen; He, Youwei; Luo, JL] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China.
通讯机构:
[Luo, JL ] U
Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Multi-objective Bayesian optimization;Multi-fidelity surrogate;Parallel computing;Multi-stage axial flow compressor
期刊:
Aerospace Science and Technology
ISSN:
1270-9638
年:
2024
卷:
150
基金类别:
National Key R & D Program of China [2023YFC3010900]; Natural Science Foundation of Hunan Province [2023JJ40545]; Research Foundation of Education Bureau of Hunan Province [23A0344]; Research Program of University of South China [220XQD064]
机构署名:
本校为第一且通讯机构
院系归属:
机械工程学院
摘要:
Parallel infill sampling is a promising approach to improve the efficiency of multi-fidelity multi-objective Bayesian optimization (MOBO). In existing literature, the number of infill samples per iteration is typically limited to 10. Additionally, the application of the multi-fidelity MOBO method in engineering optimization designs with over 100 variables is rare. To that end, a novel generalized expected improvement matrix (GEIM) criterion is proposed by using generalized reference values for the element in expected improvement matrix. Parallel infill sampling strategy based on GEIM is develo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com