版权说明 操作指南
首页 > 成果 > 详情

Int2Planner: An Intention-based Multi-modal Motion Planner for Integrated Prediction and Planning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Chen, Xiaolei;Yan, Junchi;Liao, Wenlong;He, Tao;Peng, Pai
通讯作者:
Yan, JC;He, T
作者机构:
[Yan, Junchi; Chen, Xiaolei] Shanghai Jiao Tong Univ, Sch Artificial Intelligence, Shanghai, Peoples R China.
[Yan, Junchi; Chen, Xiaolei] Shanghai Jiao Tong Univ, Dept CSE, Shanghai, Peoples R China.
[Yan, Junchi; Chen, Xiaolei] Shanghai Jiao Tong Univ, MoE Lab AI, Shanghai, Peoples R China.
[Peng, Pai; He, Tao; Chen, Xiaolei; He, T; Liao, Wenlong] COWAROBOT Co Ltd, Wuhu, Peoples R China.
[He, Tao; He, T] Univ South China, Sch Elect Engn, Hengyang, Peoples R China.
通讯机构:
[Yan, JC ] S
[He, T ] C
Shanghai Jiao Tong Univ, Sch Artificial Intelligence, Shanghai, Peoples R China.
Shanghai Jiao Tong Univ, Dept CSE, Shanghai, Peoples R China.
Shanghai Jiao Tong Univ, MoE Lab AI, Shanghai, Peoples R China.
语种:
英文
期刊:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
年:
2025
页码:
14558-14566
会议名称:
AAAI'25/IAAI'25/EAAI'25: Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence
会议地点:
Philadelphia, PA
会议主办单位:
[Chen, Xiaolei;Yan, Junchi] Shanghai Jiao Tong Univ, Sch Artificial Intelligence, Shanghai, Peoples R China.^[Chen, Xiaolei;Yan, Junchi] Shanghai Jiao Tong Univ, Dept CSE, Shanghai, Peoples R China.^[Chen, Xiaolei;Yan, Junchi] Shanghai Jiao Tong Univ, MoE Lab AI, Shanghai, Peoples R China.^[Chen, Xiaolei;Liao, Wenlong;He, Tao;Peng, Pai] COWAROBOT Co Ltd, Wuhu, Peoples R China.^[He, Tao] Univ South China, Sch Elect Engn, Hengyang, Peoples R China.
主编:
Walsh, T Shah, J Kolter, Z
出版者:
AAAI Press
ISBN:
978-1-57735-897-8
基金类别:
Shanghai Municipal Science and Technology Project [22Z510901584, 2021SHZDZX0102]
机构署名:
本校为通讯机构
院系归属:
电气工程学院
摘要:
Motion planning is a critical module in autonomous driving, with the primary challenge of uncertainty caused by interactions with other participants. As most previous methods treat prediction and planning as separate tasks, it is difficult to model these interactions. Furthermore, since the route path navigates ego vehicles to a predefined destination, it provides relatively stable intentions for ego vehicles and helps constrain uncertainty. On this basis, we construct Int2Planner, an Intention-based Integrated motion Planner achieves multi-modal planning and prediction. Instead of static inte...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com