版权说明 操作指南
首页 > 成果 > 详情

Predicting gene-disease associations with manifold learning

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Luo, Ping;Tian, Li-Ping;Chen, Bolin;Xiao, Qianghua;Wu, Fang-Xiang*
通讯作者:
Wu, Fang-Xiang
作者机构:
[Luo, Ping; Wu, Fang-Xiang] Univ Saskatchewan, Div Biomed Engn, Sakatoon, SK, Canada.
[Tian, Li-Ping] Beijing Wuzi Univ, Sch Informat, Beijing, Peoples R China.
[Chen, Bolin] Northwestern Polytech Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China.
[Xiao, Qianghua] Univ South China, Sch Math & Phys, Hengyang, Peoples R China.
[Wu, Fang-Xiang] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China.
通讯机构:
[Wu, Fang-Xiang] U
[Wu, Fang-Xiang] N
Univ Saskatchewan, Div Biomed Engn, Sakatoon, SK, Canada.
Nankai Univ, Sch Math Sci, Tianjin, Peoples R China.
Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK, Canada.
语种:
英文
关键词:
Bioinformatics;10-fold cross-validation;Disease genes;Gene-disease associations;High quality;Lower dimensional manifolds;Manifold learning;Receiver Operating Characteristic (ROC) curves;Genes
期刊:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN:
0302-9743
年:
2018
卷:
10847
页码:
265-271
会议名称:
14th International Symposium on Bioinformatics Research and Applications, ISBRA 2018
会议论文集名称:
Bioinformatics Research and Applications
会议时间:
8 June 2018 through 11 June 2018
会议地点:
Beijing, PEOPLES R CHINA
会议主办单位:
[Luo, Ping;Wu, Fang-Xiang] Univ Saskatchewan, Div Biomed Engn, Sakatoon, SK, Canada.^[Tian, Li-Ping] Beijing Wuzi Univ, Sch Informat, Beijing, Peoples R China.^[Chen, Bolin] Northwestern Polytech Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China.^[Xiao, Qianghua] Univ South China, Sch Math & Phys, Hengyang, Peoples R China.^[Wu, Fang-Xiang] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China.^[Wu, Fang-Xiang] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK, Canada.
主编:
Fa Zhang<&wdkj&>Zhipeng Cai<&wdkj&>Pavel Skums<&wdkj&>Shihua Zhang
出版地:
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者:
Springer Verlag
ISBN:
9783319949673
基金类别:
This work is supported in part by Natural Science and Engineering Research Council of Canada (NSERC), China Scholarship Council (CSC) and by the National Natural Science Foundation of China under Grant No. 61772552 and 61571052. Acknowledgments. This work is supported in part by Natural Science and Engineering Research Council of Canada (NSERC), China Scholarship Council (CSC) and by the National Natural Science Foundation of China under Grant No. 61772552 and 61571052.
机构署名:
本校为其他机构
院系归属:
数理学院
摘要:
In this study, we propose a manifold learning-based method for predicting disease genes by assuming that a disease and its associated genes should be consistent in some lower dimensional manifold. The 10-fold cross-validation experiments show that the area under of the receiver operating characteristic (ROC) curve (AUC) generated by our approach is 0.7452 with high-quality gene-disease associations in OMIM dataset, which is greater that of the competing method PBCF (0.5700). 9 out of top 10 predicted gene-disease associations can be supported b...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com