版权说明 操作指南
首页 > 成果 > 详情

BESW-YOLO: A Lightweight SAR Image Detection Model Based on YOLOv8n for Complex Scenarios

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tang, Xiao;Cao, Kun;Xia, Yunzhi;Cui, Enkun;Zhao, Weining;...
通讯作者:
Xia, YZ
作者机构:
[Tang, Xiao; Chen, Qiong; Cao, Kun] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China.
[Xia, Yunzhi; Xia, YZ] Changsha Univ Sci & Technol, Sch Comp Sci & Technol, Changsha 410114, Peoples R China.
[Cui, Enkun] China Elect Technol Grp Corp, Elect Countermeasure Res & Dev Ctr, 38th Res Inst, Hefei 230088, Peoples R China.
[Zhao, Weining] Shanghai Inst Satellite Engn, Space based Intelligent Lab, Shanghai 201108, Peoples R China.
通讯机构:
[Xia, YZ ] C
Changsha Univ Sci & Technol, Sch Comp Sci & Technol, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Marine vehicles;Feature extraction;Computational modeling;Accuracy;Radar polarimetry;Convolution;Clutter;Attention mechanisms;YOLO;Noise;Deep learning;lightweight;ship detection;synthetic aperture radar (SAR);YOLOv8
期刊:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN:
1939-1404
年:
2025
卷:
18
页码:
16081-16094
基金类别:
National Natural Science Foundation of China [62302205, 41904163]; Natural Science Foundation of Hunan Province [2025JJ50201]
机构署名:
本校为第一机构
院系归属:
机械工程学院
摘要:
Synthetic Aperture Radar (SAR) is a vital technology for ship detection due to its ability to capture high-resolution remote sensing images. However, traditional detection methods often suffer from false alarms and missed detections. Additionally, many current approaches prioritize detection accuracy while overlooking model size. To address these challenges, this paper proposes BESW-YOLO, a lightweight multi-scale ship detection model built upon the YOLOv8n architecture. Firstly, we introduce a novel lightweight feature pyramid network, Bidirectional and Multi-scale Attention Feature Pyramid N...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com