版权说明 操作指南
首页 > 成果 > 详情

Multi-channel LSTM-CNN power load multi-step prediction based on feature fusion

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Fei Ying Li;Jin Feng Xiao
作者机构:
[Fei Ying Li; Jin Feng Xiao] School of Electrical Engineering, University of South China, Hengyang, China
语种:
英文
关键词:
LSTM;CNN;feature extraction;short-term load forecasting
年:
2022
页码:
591-594
会议名称:
2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)
会议论文集名称:
2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)
会议时间:
18 November 2022
会议地点:
Ma'anshan, China
出版者:
IEEE
ISBN:
978-1-6654-7370-5
机构署名:
本校为第一机构
院系归属:
电气工程学院
摘要:
In order to fully consider the influence of uncertain factors such as complex and changeable weather conditions and social events, a multi-channel LSTM-CNN (Long Short Term Memory-Convolutional Neural Network) power load multi-step forecasting model based on feature fusion is proposed for the first time, by modeling the sequential data with different time scales and using the neural network model composed of multiple LSTM networks in parallel, the multi-scale time feature representation is learned, the output time step of each LS...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com