版权说明 操作指南
首页 > 成果 > 详情

How Do Pronouns Affect Word Embedding

认领
导出
下载 Link by 中国知网学术期刊 Link by 维普学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chung, Tonglee;Xu, Bin;Liu, Yongbin*;Li, Juanzi;Ouyang, Chunping
通讯作者:
Liu, Yongbin
作者机构:
[Xu, Bin; Li, Juanzi; Chung, Tonglee] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China.
[Ouyang, Chunping; Liu, Yongbin] Univ South China, Sch Comp Sci & Technol, Hengyang 421001, Peoples R China.
通讯机构:
[Liu, Yongbin] U
Univ South China, Sch Comp Sci & Technol, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
word embedding;co-reference resolution;representation learning
期刊:
清华大学学报自然科学版(英文版)
ISSN:
1007-0214
年:
2017
卷:
22
期:
6
页码:
586-594
基金类别:
National High-Tech Research and Development (863) ProgramNational High Technology Research and Development Program of China [2015AA015401]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61533018, 61402220]; State Scholarship Fund of CSC [201608430240]; Philosophy and Social Science Foundation of Hunan Province [16YBA323]; Scientific Research Fund of Hunan Provincial Education DepartmentHunan Provincial Education Department [16C1378, 14B153]
机构署名:
本校为通讯机构
院系归属:
计算机科学与技术学院
摘要:
Word embedding has drawn a lot of attention due to its usefulness in many NLP tasks. So far a handful of neural-network based word embedding algorithms have been proposed without considering the effects of pronouns in the training corpus. In this paper, we propose using co-reference resolution to improve the word embedding by extracting better context. We evaluate four word embeddings with considerations of co-reference resolution and compare the quality of word embedding on the task of word analogy and word similarity on multiple data sets. Experiments show that by using co-reference resoluti...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com