版权说明 操作指南
首页 > 成果 > 详情

Multi-DMC: Deep Monte-Carlo with Multi-Stage Learning in the Card Game UNO

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Yang, Xueqing;Liu, Xiaofei;Lin, Wenbin
通讯作者:
Yang, XQ
作者机构:
[Liu, Xiaofei; Yang, Xueqing; Yang, XQ] Univ South China, Sch Comp, Hengyang, Peoples R China.
[Lin, Wenbin] Univ South China, Sch Math & Phys, Hengyang, Peoples R China.
通讯机构:
[Yang, XQ ] U
Univ South China, Sch Comp, Hengyang, Peoples R China.
语种:
英文
关键词:
UNO;deep reinforcement learning;card games;imperfect-information games;self-play
期刊:
IEEE Conference on Computatonal Intelligence and Games, CIG
ISSN:
2325-4270
年:
2024
页码:
1-8
会议名称:
2024 IEEE Conference on Games (CoG)
会议论文集名称:
2024 IEEE Conference on Games (CoG)
会议时间:
05 August 2024
会议地点:
Milan, Italy
会议主办单位:
Politecnico Milano
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
979-8-3503-5068-5
机构署名:
本校为第一且通讯机构
院系归属:
数理学院
摘要:
Games can serve as important benchmarks for evaluating artificial intelligence (AI), and many game AIs have been invented, such as AlphaGo, Libratus, OpenAI Five, Suphx, and DouZero. For UNO, a popular shedding-type card game, the AI faces imperfect-information challenges, large state space, and sparse rewards. The existing methods only demonstrate the promising feasibility of classic reinforcement learning in the UNO game, which is still far from being able to compete with human players. Based on the Monte-Carlo method and deep neural networks, we combine it with Multi-Stage Learning during t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com