版权说明 操作指南
首页 > 成果 > 详情

New results on bifurcation for fractional-order octonion-valued neural networks involving delays*

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xu, Changjin;Lin, Jinting;Zhao, Yingyan;Cui, Qingyi;Ou, Wei;...
通讯作者:
Xu, CJ
作者机构:
[Xu, Changjin; Xu, CJ] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China.
[Zhao, Yingyan; Cui, Qingyi; Lin, Jinting; Liu, Zixin; Pang, Yicheng; Ou, Wei] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang, Peoples R China.
[Liao, Maoxin] Univ South China, Sch Math & Phys, Hengyang, Peoples R China.
[Li, Peiluan] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang, Peoples R China.
通讯机构:
[Xu, CJ ] G
Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China.
语种:
英文
关键词:
Fractional-order octonion-valued neural networks;existence and uniqueness;boundedness;stability;Hopf bifurcation;bifurcation diagram
期刊:
NETWORK-COMPUTATION IN NEURAL SYSTEMS
ISSN:
0954-898X
年:
2023
卷:
36
期:
3
页码:
545-597
基金类别:
National Natural Science Foundation of China [61673008, 62062018]; Project of High-level Innovative Talents of Guizhou Province [[2016] 5651]
机构署名:
本校为其他机构
院系归属:
数理学院
摘要:
This work chiefly explores fractional-order octonion-valued neural networks involving delays. We decompose the considered fractional-order delayed octonion-valued neural networks into equivalent real-valued systems via Cayley-Dickson construction. By virtue of Lipschitz condition, we prove that the solution of the considered fractional-order delayed octonion-valued neural networks exists and is unique. By constructing a fairish function, we confirm that the solution of the involved fractional-order delayed octonion-valued neural networks is bou...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com