版权说明 操作指南
首页 > 成果 > 详情

Emotion Recognition Method Based on EEG Signals: 4D-CapsBLnet Model Integrating Spatio-Temporal Features

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Chenze Zhuang;Licao Dai;Qiang Fu
作者机构:
[Licao Dai] Human Factor Institute, University of South China, Hengyang, China
[Chenze Zhuang] College of Computer Science, University of South China, Hengyang, China
[Qiang Fu] Department of Management Science and Engineering, University of South China, Hengyang, China
语种:
英文
关键词:
Emotion Recognition;EEG Signals;Deep Learning;4D Feature Structure
年:
2024
页码:
82-87
会议名称:
2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT)
会议论文集名称:
2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT)
会议时间:
26 April 2024
会议地点:
Jilin, China
出版者:
IEEE
ISBN:
979-8-3503-8096-5
机构署名:
本校为第一机构
院系归属:
管理学院
摘要:
Emotion recognition technology based on electroencephalogram (EEG) signals has become a focal point for experts and scholars globally. To improve the accuracy of machine understanding of human emotions, this paper characterizes the multidimensional information features in EEG signals, and solves the problem of 4-dimensional fusion of temporal, frequency and 2D spatial features of EEG signals, and we present a novel method named 4D-CapsBLnet. First, we transformed the multidimensional features from various channels into 4D structures for trainin...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com