版权说明 操作指南
首页 > 成果 > 详情

Adaptive learning observer and radial basis function neural networks based fixed-time fault-tolerant control of load following for a MHTGR with CRDM faults

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Wangheng;Liu, Hongliang;Ouyang, Zigen;Zeng, Wenjie;Liu, Hua
通讯作者:
Liu, HL
作者机构:
[Liu, Hongliang; Ouyang, Zigen; Liu, HL; Liu, Wangheng] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.
[Zeng, Wenjie] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
[Liu, Hua] Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China.
通讯机构:
[Liu, HL ] U
Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Adaptive learning observer;Radial basis function neural networks;Fixed-time fault-tolerant control;Control rod drive mechanism faults;Load following for modular high-temperature;gas-cooled reactor
期刊:
Nuclear Engineering and Design
ISSN:
0029-5493
年:
2025
卷:
433
页码:
113872
基金类别:
Hunan Natural Science Fund, PR China [2024JJ5320]; Hunan Provincial Education Department Fund, PR China [24B0421]; Natural Science Basic Research Program of Shaanxi, PR China [2024JC-YBMS-068]
机构署名:
本校为第一且通讯机构
院系归属:
电气工程学院
核科学技术学院
数理学院
摘要:
Load following of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) under Control Rod Drive Mechanism (CRDM) faults and disturbances remains a major challenge. This paper focuses on proposing a fixed-time fault-tolerant control method for this issue without considering the sensitivities associated with parameter setting. Firstly, to reconstruct some unmeasurable states of the MHTGR and the values of CRDM faults, an adaptive learning observer is established. Based on the learning characteristic of Radial Basis Function Neural Networks (RBFNN), the lumped uncertainties can be approximated....

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com