版权说明 操作指南
首页 > 成果 > 详情

An Efficient Dense Pedestrian Detection Model Based on RT-DETR

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Chaofan Wu;Tao He;Kun Yang
作者机构:
[Chaofan Wu; Tao He; Kun Yang] School of Computer Science, University of South China, Hengyang, China
语种:
英文
关键词:
intensive pedestrian detection;RT-DETR;attention mechanism;GELAN modules;loss function
年:
2025
页码:
23-27
会议名称:
2025 IEEE 5th International Conference on Power, Electronics and Computer Applications (ICPECA)
会议论文集名称:
2025 IEEE 5th International Conference on Power, Electronics and Computer Applications (ICPECA)
会议时间:
17 January 2025
会议地点:
Shenyang, China
出版者:
IEEE
ISBN:
979-8-3315-3370-0
机构署名:
本校为第一机构
摘要:
Pedestrian detection is a vital study field within object detection. With the development of deep learning, models perform exceptionally well in pedestrian detection for sparse scenarios. However, their performance often fails in complex and crowded dense pedestrian scenarios, particularly when there is a concentration of small objects. Challenges such as low detection accuracy, high miss rates, and high false-positive rates persist in these scenarios. To enhance dense pedestrian detection performance, we propose a model named RT-DETR-LKG, based on RT-DETR. The improved model incorporates LSKA...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com