版权说明 操作指南
首页 > 成果 > 详情

A Novel Multi-Fidelity Support Vector Classification Method for Boundary Prediction in Engineering Applications

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Luo, Jinliang;Liu, Lingzhi;He, Youwei;Tan, Kuan
通讯作者:
He, YW
作者机构:
[Liu, Lingzhi; Luo, Jinliang; Tan, Kuan; He, YW; He, Youwei] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China.
通讯机构:
[He, YW ] U
Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Computational modeling;Predictive models;Data models;Support vector machines;Numerical models;Accuracy;Training;Vectors;Static VAr compensators;Costs;Boundary prediction;classification;imbalance data;compressor operating boundary
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2025
卷:
13
页码:
16466-16488
基金类别:
10.13039/501100004735-Natural Science Foundation of Hunan Province (Grant Number: 2023JJ40545) Research Foundation of Education Bureau of Hunan Province (Grant Number: 23A0344) 10.13039/501100009020-Research Program of University of South China (Grant Number: 220XQD064)
机构署名:
本校为第一且通讯机构
院系归属:
机械工程学院
摘要:
The accurate prediction of failure boundaries in engineering applications is essential for ensuring safety and reliability. Traditional methods often rely heavily on high-fidelity physical experiments or numerical simulations, which are prohibitively expensive and time-consuming. In response to this challenge, our research proposes an innovative multi-fidelity support vector classification approach that leverages an abundant supply of low-fidelity data alongside a limited amount of high-fidelity data. This combination significantly reduces modeling costs while maintaining or even enhancing pre...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com