Flexible conductive hydrogels (FCHs) have attracted widespread interest as versatile monoliths that can be intricately integrated with various ingredients boasting multiple functionalities. The chemicophysical properties of FCHs cover a wide range, which significantly vary in their building blocks. However, achieving both favorable mechanical strength and high conductivity simultaneously through a facile approach remains a challenge. Herein, polyvinyl alcohol, dialdehyde cellulose nanofibrils, silver nanoparticles, borax, and tannic acid are re...