版权说明 操作指南
首页 > 成果 > 详情

Multi-Modal Incomplete Brain Tumor Segmentation with Mamba

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yudan Li;Xiaozhi Zhang;Dongping Xiong;Lijun Ouyang
作者机构:
[Dongping Xiong; Lijun Ouyang] School of Computing/Software, University of South China, Hengyang, Hunan, China [email protected]
[Yudan Li; Xiaozhi Zhang] School of Electrical Engineering, University of South China, Hengyang, Hunan, China [email protected]
语种:
英文
年:
2025
页码:
421-425
会议名称:
ISAIMS '24: Proceedings of the 2024 5th International Symposium on Artificial Intelligence for Medicine Science
会议论文集名称:
Artificial Intelligence for Medicine Science
出版地:
New York, NY, United States
出版者:
Association for Computing Machinery
ISBN:
9798400717826
机构署名:
本校为第一机构
院系归属:
电气工程学院
摘要:
Accurately segmenting brain tumors from multimodal MRI sequences is a key prerequisite for brain tumor diagnosis, prognosis assessment, and surgical treatment. However, in practical applications, one or more modal data is often missing due to image corruption, different acquisition protocols, artifacts, contrast agent allergies, or cost considerations. To address the challenges of brain tumor segmentation under modality loss, this paper proposes an innovative tumor feature perception strategy. The core of this strategy is to introduce a Mamba-based Encoder (MBE) architecture, which effectively...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com