版权说明 操作指南
首页 > 成果 > 详情

Multimodal Fatigue Recognition State Based on Eyelid Features

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xiangyu Han;Licao Dai
作者机构:
[Licao Dai] Human Factor Institute, University of South China, Hengyang, China
[Xiangyu Han] College of Computer Science, University of South China, Hengyang, China
语种:
英文
期刊:
2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT)
年:
2023
页码:
856-865
机构署名:
本校为第一机构
院系归属:
管理学院
摘要:
Fatigue recognition of operators in a complex human-machine interface can effectively avoid human error. Aiming at improving the operator's vigilance in the digital control room of nuclear power plants, this paper proposes a multimodal fatigue state recognition technique. It combines deep learning and eyelid feature information to recognize the fatigue state of operators. Temporal Convolutional Network (TCN) is integrated with the 3D Residual Network (ResNet3D) to retain the temporal and spatial features of the eyelid. By using a custom cosine annealing learning rate decay algorithm to avoid t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com