版权说明 操作指南
首页 > 成果 > 详情

A MLE-based blind signal separation method for time-frequency overlapped signal using neural network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Pang, Lihui;Tang, Yilong;Tan, Qingyi;Liu, Yulang;Yang, Bin
通讯作者:
Pang, Lihui(sunshine.plh@hotmail.com)
作者机构:
[Tan, Qingyi; Tang, Yilong; Yang, Bin; Pang, Lihui; Liu, Yulang] Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China.
[Pang, Lihui] Sungkyunkwan Univ, Dept Software, Suwon 440746, South Korea.
通讯机构:
[Lihui Pang] S
School of Electrical Engineering, University of South China, Hengyang, China<&wdkj&>Department of Software, Sungkyunkwan University, Suwon, South Korea
语种:
英文
关键词:
Blind signal separation;Kernel density estimation;Maximum likelihood estimation;Neural networks;Time–frequency overlapped signal
期刊:
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING
ISSN:
1687-6172
年:
2022
卷:
2022
期:
1
页码:
1-25
基金类别:
This work was supported in part by the National Natural Science Foundation of China (Nos. 61901209, 61871210 and 61901149), in part by Natural Science Foundation of Hunan Province (No. 2022JJ40377) and in part by the Scientific Research Project of Hunan Provincial Education Department (No. 19C1591).
机构署名:
本校为第一机构
院系归属:
电气工程学院
摘要:
AbstractThe blind signal separation (BSS) algorithm obtains each original/source signal from the observed signal collected by the receiving antenna or sensor. Objective/loss/cost function and optimization method are two key parts of BSS algorithm. Modifying the objective function and optimization from the perspective of neural network (NN) is a novel concept in BSS domain. $$L_2$$ L 2 regularization is adopted as a term of maximum likelihood estimation (MLE)-based objective function like in Liu et al.(Sensors 21(3):973, 2021); however, w...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com