版权说明 操作指南
首页 > 成果 > 详情

Research on Motor Rolling Bearing Fault Classification Method Based on CEEMDAN and GWO-SVM

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Jinfeng Xiao;Renxiong Zhuo
作者机构:
[Jinfeng Xiao; Renxiong Zhuo] College of Electrical Engineering, University of South China
语种:
英文
关键词:
fault classification;Support Vector Machine;Grey Wolf Optimization;Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
期刊:
2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC)
年:
2018
页码:
1123-1129
会议名称:
2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC)
会议论文集名称:
2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC)
会议时间:
May 2018
会议地点:
Xi'an, China
出版者:
IEEE
ISBN:
978-1-5386-1804-2
机构署名:
本校为第一机构
院系归属:
电气工程学院
摘要:
In the training of Support Vector Machine (SVM) classification model, some problems such as over-fitting, under-fitting, slow training speed and prediction affected by penalty and kernel function parameters are exposed. A fault classification method of rolling bearing based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Grey Wolf Optimization (GWO) -SVM is proposed. Firstly, the acquire signals are adaptively decomposed into a plurality of Intrinsic Mode Function(IMF) component by CEEMDAN, and the energy entropy of each IMF component is extracted to form a ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com