版权说明 操作指南
首页 > 成果 > 详情

Virtual monochromatic image-based automatic segmentation strategy using deep learning method

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Lekang;Yu, Shutong;Chen, Yan;Wei, Xiang;Yang, Junqian;...
通讯作者:
Le, XY;Zhang, YB
作者机构:
[Le, Xiaoyun; Le, XY; Yang, Junqian; Chen, Lekang] Beihang Univ, Sch Phys, Beijing 102206, Peoples R China.
[Zhang, Yibao; Yu, Shutong] Peking Univ Canc Hosp & Inst, Minist Educ Beijing, Dept Radiat Oncol, Key Lab Carcinogenesis & Translat Res, Beijing 100142, Peoples R China.
[Chen, Yan; Wei, Xiang] Third Hosp Mianyang, Sichuan Mental Hlth Ctr, Mianyang, Peoples R China.
[Zeng, Wenjie; Guo, Chong] Univ South China, Sch Nucl Sci & Technol, Hengyang City 421001, Peoples R China.
[Yang, Chao] CAS Ion Med Technol Co Ltd, Dept Technol, Beijing 100190, Peoples R China.
通讯机构:
[Zhang, YB ] P
[Le, XY ] B
Beihang Univ, Sch Phys, Beijing 102206, Peoples R China.
Peking Univ Canc Hosp & Inst, Minist Educ Beijing, Dept Radiat Oncol, Key Lab Carcinogenesis & Translat Res, Beijing 100142, Peoples R China.
语种:
英文
关键词:
Automatic segmentation;Deep learning;Dual-energy CT;Virtual monochromatic image
期刊:
Physica Medica
ISSN:
1120-1797
年:
2025
卷:
134
页码:
104986
基金类别:
Beijing Natural Science Foundation [Z210008]; National Natural Science Foundation of China [12475309, 12275012, 12411530076, 82202941]; China International Talent Exchange Foundation [JC202502001F]; Fundamental Research Funds for the Central Universities/Clinical Medicine Plus X-Young Scholars Project of Peking University [PKU2025PKULCXQ014]; Ministry of Education Exchange Program for Teachers and Students of Higher Education Institutions in the Chinese Mainland/Hong Kong/Macao [7111400072]; National Key R & D Program of China [2019YFF01014405]; Inner Mongolia Science & Technology Project Plan [2022YFSH0064]
机构署名:
本校为其他机构
院系归属:
核科学技术学院
摘要:
Background and purpose The image quality of single-energy CT (SECT) limited the accuracy of automatic segmentation. Dual-energy CT (DECT) may potentially improve automatic segmentation yet the performance and strategy have not been investigated thoroughly. Based on DECT-generated virtual monochromatic images (VMIs), this study proposed a novel deep learning model (MIAU-Net) and evaluated the segmentation performance on the head organs-at-risk (OARs). The image quality of single-energy CT (SECT) limited the accuracy of automatic segmentation. Dual-energy CT (DECT) may potentially improve automa...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com