版权说明 操作指南
首页 > 成果 > 详情

Using Machine Learning and GPT Models To Enhance Electrochemical Pretreatment of Anaerobic Cofermentation: Prediction, Early Warning, and Biomarker Identification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Jinqi Jiang;Qingshan Lin;Xiaohong Guan;Shuai Zhou;Shifa Zhong;...
通讯作者:
Gang Guo
作者机构:
[Jinqi Jiang; Gang Guo; Zongping Wang; Guo, G] Sch Environm Sci & Engn, Hubei Key Lab Multimedia Pollut Cooperat Control Y, Wuhan 430074, Peoples R China.
[Jinqi Jiang; Xiang Xiang] Huazhong Univ Sci & Technol, Inst Artificial Intelligence, Wuhan 430074, Peoples R China.
[Qingshan Lin] Chongqing Univ Arts & Sci, Chongqing Key Lab Resource Utilizat Heavy Met Wast, Yongchuan 402160, Peoples R China.
[Qingshan Lin] Chongqing Univ, Sch Energy & Power Engn, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China.
[Xiaohong Guan; Shifa Zhong] East China Normal Univ, Inst Ecochongming, Shanghai Engn Res Ctr Biotransformat Organ Solid W, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China.
通讯机构:
[Guo, G ] S
Sch Environm Sci & Engn, Hubei Key Lab Multimedia Pollut Cooperat Control Y, Wuhan 430074, Peoples R China.
语种:
英文
关键词:
machine learning;generative pretrain transformer;waste activated sludge;food waste;anaerobic cofermentation
期刊:
ACS ES&T Engineering
ISSN:
2690-0645
年:
2025
卷:
5
期:
5
页码:
1149–1159
基金类别:
National Natural Science Foundation of China [52470035]; National Natural Science Foundation of China [2023YFC3207404]; National Key Research and Development Program of China [0026/2022/A1]; Science and Technology Development Fund, Macao S.A.R (FDCT) [R2023HH04]; Scientific Research Foundation of Chongqing University of Arts and Sciences
机构署名:
本校为其他机构
院系归属:
土木工程学院
摘要:
Electrochemical enhancing anaerobic cofermentation of waste activated sludge and food waste to produce volatile fatty acids (VFAs) represents an innovative and promising approach. Despite its potential, optimizing system performance, providing early warnings, and identifying biomarkers remain challenging tasks due to the intricate interplay of numerous environmental variables and unclear dynamics of microbial interactions. This study first employed machine learning (ML) models including XGBoost, random forest (RF), support vector regression (SVR), and CatBoost to forecast VFA production by int...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com