版权说明 操作指南
首页 > 成果 > 详情

Ensemble method to joint inference for knowledge extraction

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Yongbin;Ouyang, Chunping*;Li, Juanzi
通讯作者:
Ouyang, Chunping
作者机构:
[Ouyang, Chunping; Liu, Yongbin] Univ South China, Coll Comp Sci & Technol, Hengyang 421001, Peoples R China.
[Li, Juanzi; Liu, Yongbin] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China.
通讯机构:
[Ouyang, Chunping] U
Univ South China, Coll Comp Sci & Technol, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Ensemble learning;Joint inference;Knowledge extraction;Markov logic network
期刊:
Expert Systems with Applications
ISSN:
0957-4174
年:
2017
卷:
83
页码:
114-121
基金类别:
973 ProgramNational Basic Research Program of China [2014CB340504]; State Key Program of National Natural Science of ChinaNational Natural Science Foundation of China (NSFC) [61533018]; NSFC-ANRFrench National Research Agency (ANR) [61261130588]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61402220, 1309007]; State Scholarship Fund of CSC [201608430240]; Philosophy and Social Science Foundation of Hunan Province [16YBA323]; Tsinghua University Initiative Scientific Research Program [20131089256]; Science and Technology Support Program [2014BAK04B00]; China Postdoctoral Science FoundationChina Postdoctoral Science Foundation [2014M550733]; THU-NUS NExT Co-Lab; Scientific Research Fund of Hunan Provincial Education DepartmentHunan Provincial Education Department [16C1378]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
Joint inference is a fundamental issue in the field of artificial intelligence. The greatest advantage of the joint inference is demonstrated by its capability of avoiding errors from cascading and accumulating on a pipeline of multiple chained sub-tasks. Markov Logic Network(MLN) is the most common joint inference model that provides a flexible representation and handles uncertainty. It has been applied successfully to joint inference on many natural language processing tasks to avoid error propagation. However, due to the great expressiveness...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com