版权说明 操作指南
首页 > 成果 > 详情

scEnrich: An online webserver for cell-type identification of scATAC-seq data through comprehensive region enrichment analysis

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Dong, Fujuan;Li, Ye;Liu, Zhaomeng;Yu, Zhengmin;Qian, Fengcui;...
通讯作者:
Li, CQ
作者机构:
[Li, Lidong; Li, Chunquan; Qian, Fengcui; Yu, Zhengmin; Dong, Fujuan; Cai, Fuhong] Univ South China, Sch Comp, Hengyang, Hunan, Peoples R China.
[Li, Ye] Univ South China, Sch Basic Med Sci, Hengyang Med Sch, Dept Cell Biol & Genet, Hengyang, Hunan, Peoples R China.
[Liu, Zhaomeng] Univ South China, Hengyang Med Coll, Inst Biochem & Mol Biol, Hengyang, Hunan, Peoples R China.
[Li, Chunquan; Qian, Fengcui] Univ South China, Hunan Prov Key Lab Multiom & Artificial Intellige, Hengyang, Hunan, Peoples R China.
通讯机构:
[Li, CQ ] U
Univ South China, Sch Comp, Hengyang, Hunan, Peoples R China.
Univ South China, Hunan Prov Key Lab Multiom & Artificial Intellige, Hengyang, Hunan, Peoples R China.
语种:
英文
关键词:
Cell-type identification;scATAC-seq;Epigenetic regulation;Enrichment analysis
期刊:
PROCEEDINGS OF 2025 5TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND INTELLIGENT COMPUTING, BIC 2025
年:
2025
页码:
371-378
会议名称:
BIC '25: Proceedings of the 2025 5th International Conference on Bioinformatics and Intelligent Computing
会议地点:
Liaoning University, Shenyang, PEOPLES R CHINA
会议主办单位:
Liaoning University
出版地:
New York, NY, United States
出版者:
Association for Computing Machinery
ISBN:
9798400712203
基金类别:
Science and Technology Innovation Program of Hunan Province [2024RC1062]; National Natural Science Foundation of China [62171166, 62301246]; Innovation Platform and Talent Program [2023TP1047]; Natural Science Foundation of Hunan Province [20231130536]; University of South China [20224310NHYCG05]
机构署名:
本校为第一且通讯机构
院系归属:
药学与生物科学学院
摘要:
There are excellently annotated cell atlases for scRNA-seq currently, and there have been many works on cell type annotation of scRNA-seq data, and many methods have achieved good achievements. However, it has been noted that the extreme sparsity of scATAC-seq data often limits its power in cell-type identification. There are still few related algorithms available, and online cell type annotation tools are still lacking. The existing methods for annotating scATAC-seq rely too much on the scRNA-seq reference set, and the cell-type label accuracy needs to be improved. Therefore, we propose to us...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com