版权说明 操作指南
首页 > 成果 > 详情

An efficient co-evolutionary particle swarm optimizer for solving multi-objective optimization problems

认领
导出
下载 Link by 中国知网会议论文
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Wu, Daqing*;Liu, Li;Gong, XiangJian;Deng, Li
通讯作者:
Wu, Daqing
作者机构:
[Wu, Daqing] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Anhui, Peoples R China.
[Liu, Li; Gong, XiangJian; Wu, Daqing] Univ South China, Comp Sci & Technol Inst, Hengyang 421001, Hunan, Peoples R China.
[Deng, Li; Wu, Daqing] DongHua Univ, Glorious Sun Sch Business & Management, Shanghai 200051, Peoples R China.
通讯机构:
[Wu, Daqing] A
Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Anhui, Peoples R China.
语种:
英文
关键词:
Multi-objective Optimization;Particle Swarm Optimizer;Neighborhood Best Particle;Dynamic Swarms;Economic Environmental Dispatch
期刊:
Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015
ISSN:
1948-9439
年:
2015
页码:
1975-1979
会议名称:
27th Chinese Control and Decision Conference (CCDC)
会议论文集名称:
Chinese Control and Decision Conference
会议时间:
MAY 23-25, 2015
会议地点:
Qingdao, PEOPLES R CHINA
会议主办单位:
[Wu, Daqing] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Anhui, Peoples R China.^[Wu, Daqing;Liu, Li;Gong, XiangJian] Univ South China, Comp Sci & Technol Inst, Hengyang 421001, Hunan, Peoples R China.^[Wu, Daqing;Deng, Li] DongHua Univ, Glorious Sun Sch Business & Management, Shanghai 200051, Peoples R China.
会议赞助商:
IEEE Ind Elect Chapter, Qingdao Univ, IEEE Control Syst Soc, Syst Engn Soc China, Chinese Assoc Artificial Intelligence, Chinese Assoc Automat, Tech Comm Control Theory, Northeastern Univ
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-4799-7016-2
基金类别:
supported by the project of ministry of education of Hunan Province under Grant.13C818;the Industrial Science and Technology Support Project of Hunan Province;Hengyang under Grant.2013KG63;The Open Project Program of Key Laboratory of Intelligent Computing&Signal Processing;Ministry of Education;Anhui University;China under Grant.2014C16304
机构署名:
本校为其他机构
院系归属:
计算机科学与技术学院
摘要:
An efficient co-evolutionary multi-objective particle swarm optimizer named ECMPSO was proposed. ECMPSO uses dynamic multiple swarms to deal with multiple objectives, taking one objective is optimized by each swarm into account, and maintains diversity of new found non-dominated solutions via adopts a three-level particle swarm optimization(PSO) updating rule wherein the particles learn their experiences based on personal, neighborhood, and external archive. To prove the validity of the ECMPSO algorithm for solving multi-objective problems, some benchmark problems and one real-life problem are...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com