版权说明 操作指南
首页 > 成果 > 详情

Stability and Hopf Bifurcation of a Class of Six-Neuron Fractional BAM Neural Networks with Multiple Delays

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Bingbing;Liao, Maoxin;Xu, Changjin;Chen, Huiwen;Li, Weinan
通讯作者:
Maoxin Liao
作者机构:
[Li, Weinan; Li, Bingbing; Liao, Maoxin; Chen, Huiwen] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China.
[Xu, Changjin] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China.
通讯机构:
[Maoxin Liao] S
School of Mathematics and Physics, University of South China, Hengyang 421001, China<&wdkj&>Author to whom correspondence should be addressed.
语种:
英文
关键词:
fractional-order BAM neural networks;delay;hopf bifurcation;stability
期刊:
Fractal and Fractional
ISSN:
2504-3110
年:
2023
卷:
7
期:
2
页码:
142-
基金类别:
Supported partly by the National Natural Science Foundation of China (12261015), Hunan Natural Science Foundation (2020JJ4516), Hunan Provincial Key Foundation of Education Department (17A181), Hunan Provincial Postgraduate Research and Innovation Project (CX20220980).
机构署名:
本校为第一机构
院系归属:
数理学院
摘要:
In this paper, we study the stability and Hopf bifurcation of a class of six-neuron fractional BAM neural networks with multiple delays. Firstly, the model is transformed into a fractional neural network model with two nonidentical delays by using variable substitution. Then, by assigning a value to one of the time delays and selecting the remaining time delays as parameters, the critical value of Hopf bifurcation for different time delays is calculated. The study shows that when the time lag exceeds its critical value, the equilibrium point of the system will lose its stability and generate H...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com