版权说明 操作指南
首页 > 成果 > 详情

Multi-input and multi-output shielding calculation agent model method based on improved neural network with Swish-NNTA

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gui, Long;Song, Yingming;Li, Xiaomeng;Yuan, Weiwei
通讯作者:
Song, YM
作者机构:
[Li, Xiaomeng; Gui, Long; Song, Yingming] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
[Song, Yingming] CNNC, Nucl Ind Coll, Beijing 102618, Peoples R China.
[Yuan, Weiwei] Univ South China, Radon Prov Key Lab, Hengyang 421001, Peoples R China.
通讯机构:
[Song, YM ] U
Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Shielding design;Neural network;Swish;Adam;NNTA
期刊:
Annals of Nuclear Energy
ISSN:
0306-4549
年:
2024
卷:
201
页码:
110415
基金类别:
Activation functions play a crucial role in training neural networks. Currently, the most widely used and default activation function in most neural network frameworks is Rectified Linear Unit (ReLU), defined as ReLU(x) = max(0,x), which retains only positive inputs and returns zero for negative values. Although ReLU has simple computation and sparsity characteristics, for input datasets with uneven data distribution, the presence of more negative values often results in a large number of ReLU
机构署名:
本校为第一且通讯机构
院系归属:
核科学技术学院
摘要:
Researchers have utilized neural networks as agent models to predict shielded data sets for reactor shielding designs. However, previous models faced challenges related to unbalanced multi-scale characteristics in input and output data sets, resulting in significant generalization errors. Additionally, these models did not consider source term parameters like energy spectrum probability density distribution parameters and angle sine and cosine distribution parameters. To address these challenges, this study proposes an improved neural network model with the Swish-NNTA learning scheme. This lea...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com