版权说明 操作指南
首页 > 成果 > 详情

Deep Monte Carlo for Four-Player Military Chess AI: A Comprehensive Study on Algorithmic Strategies and Performance Benchmarking

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Zhixin Sun;Wenbin Lin
作者机构:
[Wenbin Lin] School of Mathematics and Physics, University of South China, Hengyang, China
[Zhixin Sun] School of Computer Science, University of South China, Hengyang, China
语种:
英文
关键词:
Four-Player Military Chess;Neural-Guided MCTS;Imperfect-Information Games;Multi-Agent Strategy
年:
2025
页码:
2058-2061
会议名称:
2025 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA)
会议论文集名称:
2025 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA)
会议时间:
28 March 2025
会议地点:
Xi'an, China
出版者:
IEEE
ISBN:
979-8-3315-0977-4
机构署名:
本校为第一机构
院系归属:
数理学院
摘要:
This paper introduces Deep Monte Carlo (DMC), a neural-enhanced algorithm designed for mastering Four-Player Military Chess, a complex imperfect-information game characterized by dynamic alliances and hierarchical combat mechanics. The proposed framework integrates three key components through a lightweight multi-branch neural network: a 17×17×8 tensor encoding spatial unit distributions, terrain features, and multi-scale threat maps; a 64-dimensional action vector representing move parameters and combat outcomes; and an 8-step historical seq...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com