Consider the nonlinear difference equations of the form & Laplacetrf;u=fm(u),m is an element of & Zopf;$$ \mathit{\mathcal{L}u}={f}_m(u),\kern0.3em m\in \mathbb{Z} $$, where & Laplacetrf;$$ \mathcal{L} $$ is a Jacobi operator given by & Laplacetrf;um=amum+1+am-1um-1+bmum$$ \mathcal{L}{u}_m={a}_m{u}_{m+1}+{a}_{m-1}{u}_{m-1}+{b}_m{u}_m $$ for m is an element of & Zopf;,am$$ m\in \mathbb{Z},\kern0.3em \left\{{a}_m\right\} $$ and bm$$ \left\{{b}_m\right\} $$ are real valued T$$ T $$-periodic sequences, and f:& Zopf;x & Ropf;->& Ropf;$$ f:\mathbb{Z}\times \mathbb{R}\to \mathbb{R} $$. Applying criti...