版权说明 操作指南
首页 > 成果 > 详情

SOGCN: Prediction of key properties of MR-TADF materials using graph convolutional neural networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Yingfu;Zhang, Bohua;Ren, Aimin;Wang, Dongdong;Zhang, Jun;...
通讯作者:
Zou, LY;Nie, CM;Zhang, J
作者机构:
[Ren, Aimin; Zou, Luyi; Su, Zhongmin; Li, Yingfu] Jilin Univ, Coll Chem, Inst Theoret Chem, Changchun 130023, Peoples R China.
[Nie, CM; Nie, Changming; Li, Yingfu] Univ South China, Sch Chem & Chem Engn, Hengyang 421001, Peoples R China.
[Wang, Dongdong; Zhang, Bohua] Xi An Jiao Tong Univ, Sch Chem, Xian 710049, Peoples R China.
[Zhang, J; Zhang, Jun] Shenzhen Bay Lab, Inst Syst & Phys Biol, Shenzhen 518055, Peoples R China.
通讯机构:
[Nie, CM ] U
[Zhang, J ] S
[Zou, LY ] J
Jilin Univ, Coll Chem, Inst Theoret Chem, Changchun 130023, Peoples R China.
Univ South China, Sch Chem & Chem Engn, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Organic light-emitting diode;Multiple resonance thermal activation delayed;fluorescence;Graph convolutional neural network;Density functional theory;Coupled cluster
期刊:
CHEMICAL ENGINEERING JOURNAL
ISSN:
1385-8947
年:
2024
卷:
501
基金类别:
International Science and Technology Cooperation Project of Jilin Provincial Department of Science and Technology [20240402047GH]; Key Scientific Research Planning Project of Jilin Provincial Education Department [JJKH20241249KJ, JJKH20230511KJ]; Jilin Province Major Science and Technology Special Project [YDZJ202203CGZH030]; Jilin Province Key Research and Development Program [20240302122GX, 20240302015GX]; Natural Science Foundation of Jilin Province of China [20240101167JC]; Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP, CAS
机构署名:
本校为通讯机构
院系归属:
化学化工学院
摘要:
The exploration of the structure and properties of the luminescent materials in OLED devices using Multiple Resonance Thermally Activated Delayed Fluorescence (MR-TADF) is constrained by challenges related to long cycles and high experimental costs, making it a key obstacle in the development of new materials. In response to this challenge, we propose an innovative approach by constructing a graph convolutional neural network model named SOGCN to quickly determine whether an unsynthesized material has the potential to become an MR material, and accurately predict its energy gap and half-peak w...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com