版权说明 操作指南
首页 > 成果 > 详情

FDGANet: Frequency dynamic graph attention network for undersampled MRI reconstruction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xie, Yushan;Xiong, Dongping;Zhao, Heng;Zhou, Hong;Ling, Bingo Wing-Kuen;...
通讯作者:
Zhang, XZ
作者机构:
[Zhang, XZ; Zhang, Xiaozhi; Xie, Yushan] Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China.
[Xiong, Dongping] Univ South China, Sch Comp Software, Hengyang 421001, Peoples R China.
[Zhao, Heng; Zhou, Hong] Univ South China, Dept Radiol, Affiliated Hosp 1, Hengyang 421001, Peoples R China.
[Ling, Bingo Wing-Kuen] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China.
[Zhang, XZ; Zhang, Xiaozhi] Univ South China, Hunan Prov Key Lab Multiom & Artificial Intelligen, Key Lab Hunan Prov Major Brain Dis, Hengyang 421001, Peoples R China.
通讯机构:
[Zhang, XZ ] U
Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China.
Univ South China, Hunan Prov Key Lab Multiom & Artificial Intelligen, Key Lab Hunan Prov Major Brain Dis, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Undersampled MRI reconstruction;Wavelet transform;Dynamic graph attention;Non-local self-similarity
期刊:
Biomedical Signal Processing and Control
ISSN:
1746-8094
年:
2025
卷:
108
页码:
107933
基金类别:
National Natural Science Foundation of China [62071213]; Open Project Program of Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases [2023TP1047]; Key Research and Development Projects of Hunan Province [2020SK51826]; Clinical Research 4310 Program of the First Affiliated Hospital of University of South China [20224310NHYCG03]
机构署名:
本校为第一且通讯机构
院系归属:
电气工程学院
摘要:
Undersampled magnetic resonance imaging (MRI) aims at reconstructing high-quanlity MR images from undersampled measurements, which plays a crucial role for accelerated MRI. Deep learning methods have shown great superiority in undersampled MRI. However, most of these approaches reconstruct MR images in the image domain, ignoring frequency characteristics. This leads to conflicting information between different frequencies, making it difficult to reconstruct a clearly structured image. In this work, we present a novel wavelet domain based dynamic graph attention network, called FDGANet, for und...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com