版权说明 操作指南
首页 > 成果 > 详情

An Infrared and Visible Image Fusion Network Based on Res2Net and Multiscale Transformer

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tan, Binxi;Yang, Bin
通讯作者:
Yang, B
作者机构:
[Yang, Bin; Tan, Binxi] Univ South China, Coll Elect Engn, Hengyang 421001, Peoples R China.
通讯机构:
[Yang, B ] U
Univ South China, Coll Elect Engn, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Transformer;deep learning;image fusion;infrared image;multiscale features
期刊:
Sensors
ISSN:
1424-8220
年:
2025
卷:
25
期:
3
基金类别:
National Natural Science Foundation of China; [61871210]
机构署名:
本校为第一且通讯机构
院系归属:
电气工程学院
摘要:
The aim of infrared and visible image fusion is to produce a composite image that can highlight the infrared targets and maintain plentiful detailed textures simultaneously. Despite the promising fusion performance of current deep-learning-based algorithms, most fusion algorithms highly depend on convolution operations, which limits their capability to represent long-range contextual information. To overcome this challenge, we design a novel infrared and visible image fusion network based on Res2Net and multiscale Transformer, called RMTFuse. Specifically, we devise a local feature extraction ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com