版权说明 操作指南
首页 > 成果 > 详情

FPGA-based improved YOLOv4-Tiny model for transmission line defect detection and deployment

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Zhihao Xie;Jun Chen;Zhongwei Liu;Cheng Zeng;Ziji Ma
作者机构:
[Jun Chen] College of Electronic Science, National University of Defense Technology, Changsha, China
[Zhihao Xie; Zhongwei Liu; Ziji Ma] College of Electrical and Information Engineering, Hunan University, Changsha, China
[Cheng Zeng] School of Electrical Engineering, Nanhua University, Hengyang, China
语种:
英文
关键词:
Transmission line defect detection;YOLOv4-Tiny-EL;BN layer fusion;Double-buffer structure;High-parallel operator
年:
2025
页码:
3336-3341
会议名称:
2025 IEEE 8th International Electrical and Energy Conference (CIEEC)
会议论文集名称:
2025 IEEE 8th International Electrical and Energy Conference (CIEEC)
会议时间:
16 May 2025
会议地点:
Changsha, China
出版者:
IEEE
ISBN:
979-8-3315-4298-6
基金类别:
10.13039/501100020487-Nature 10.13039/100006190-Research and Development 10.13039/100006190-Research and Development 10.13039/501100020487-Nature
机构署名:
本校为其他机构
院系归属:
电气工程学院
摘要:
For the problem of transmission line defect detection, this paper designs the improved YOLOv4-Tiny-EL model and YOLOv4-Tiny-EM model based on YOLOv4-Tiny. Their mean Average Precision (mAP) has increased by 2.31% and 3.53% respectively compared with the original model. To balance detection accuracy and speed, the YOLOv4-Tiny-EL model is selected for deployment in the edge device ZYNQ7020. In the model inference optimization stage, the Batch Normalization (BN) layer fusion method is adopted to reduce the computational load and storage overhead, ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com